The following publications are possibly variants of this publication:
- xDeepFIG: An eXtreme Deep Model with Feature Interactions and Generation for CTR PredictionBokai Xu, Shihan Bu, Xinyue Li, Yanzhi Lin, Shengxin Zhu. bdsic 2021: 42-51 [doi]
- DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad ServingWei Deng 0002, Junwei Pan, Tian Zhou, Deguang Kong, Aaron Flores, Guang Lin. wsdm 2021: 922-930 [doi]
- Memorize, Factorize, or be Naive: Learning Optimal Feature Interaction Methods for CTR PredictionFuyuan Lyu, Xing Tang 0007, Huifeng Guo, Ruiming Tang, Xiuqiang He 0001, Rui Zhang, Xue Liu. icde 2022: 1450-1462 [doi]
- Reformulating CTR Prediction: Learning Invariant Feature Interactions for RecommendationYang Zhang, Tianhao Shi, Fuli Feng, Wenjie Wang, Dingxian Wang, Xiangnan He 0001, Yongdong Zhang 0001. sigir 2023: 1386-1395 [doi]
- An Ad CTR Prediction Method Based on Feature Learning of Deep and Shallow LayersZai Huang, Zhen Pan, Qi Liu, Bai Long, Haiping Ma, Enhong Chen. CIKM 2017: 2119-2122 [doi]
- TFNet: Multi-Semantic Feature Interaction for CTR PredictionShu Wu, Feng Yu, Xueli Yu, Qiang Liu, Liang Wang, Tieniu Tan, Jie Shao, Fan Huang. sigir 2020: 1885-1888 [doi]
- Deep Position-wise Interaction Network for CTR PredictionJianqiang Huang, Ke Hu, Qingtao Tang, Mingjian Chen, Yi Qi, Jia Cheng, Jun Lei. sigir 2021: 1885-1889 [doi]
- Deep interaction network based CTR prediction modelWenqiang Zhang, Li Wang. iscid 2020: 286-289 [doi]
- AutoGroup: Automatic Feature Grouping for Modelling Explicit High-Order Feature Interactions in CTR PredictionBin Liu, Niannan Xue, Huifeng Guo, Ruiming Tang, Stefanos Zafeiriou, Xiuqiang He, Zhenguo Li. sigir 2020: 199-208 [doi]