Abstract is missing.
- Scalable Higher-Order Tensor Product Spline ModelsDavid Rügamer. 1-9 [doi]
- Fair k-center Clustering with OutliersDaichi Amagata. 10-18 [doi]
- A/B testing under Interference with Partial Network InformationShiv Shankar, Ritwik Sinha, Yash Chandak, Saayan Mitra, Madalina Fiterau. 19-27 [doi]
- Achieving Fairness through Separability: A Unified Framework for Fair Representation LearningTaeuk Jang, Hongchang Gao, Pengyi Shi, Xiaoqian Wang 0001. 28-36 [doi]
- Personalized Federated X-armed BanditWenjie Li, Qifan Song, Jean Honorio. 37-45 [doi]
- Non-Neighbors Also Matter to Kriging: A New Contrastive-Prototypical LearningZhishuai Li, Yunhao Nie, Ziyue Li 0002, Lei Bai 0001, Yisheng Lv, Rui Zhao 0001. 46-54 [doi]
- Boundary-Aware Uncertainty for Feature Attribution ExplainersDavin Hill, Aria Masoomi, Max Torop, Sandesh Ghimire, Jennifer G. Dy. 55-63 [doi]
- Asynchronous SGD on Graphs: a Unified Framework for Asynchronous Decentralized and Federated OptimizationMathieu Even, Anastasia Koloskova, Laurent Massoulié. 64-72 [doi]
- Comparing Comparators in Generalization BoundsFredrik Hellström, Benjamin Guedj. 73-81 [doi]
- A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk MinimizationMathieu Dagréou, Thomas Moreau 0001, Samuel Vaiter, Pierre Ablin. 82-90 [doi]
- Better Batch for Deep Probabilistic Time Series ForecastingVincent Zhihao Zheng, Seongjin Choi, Lijun Sun. 91-99 [doi]
- Distributionally Robust Model-based Reinforcement Learning with Large State SpacesShyam Sundhar Ramesh, Pier Giuseppe Sessa, Yifan Hu, Andreas Krause 0001, Ilija Bogunovic. 100-108 [doi]
- Sketch In, Sketch Out: Accelerating both Learning and Inference for Structured Prediction with KernelsTamim El Ahmad, Luc Brogat-Motte, Pierre Laforgue, Florence d'Alché-Buc. 109-117 [doi]
- Ordinal Potential-based Player RatingNelson Vadori, Rahul Savani. 118-126 [doi]
- Mind the GAP: Improving Robustness to Subpopulation Shifts with Group-Aware PriorsTim G. J. Rudner, Ya Shi Zhang, Andrew Gordon Wilson, Julia Kempe. 127-135 [doi]
- Simple and scalable algorithms for cluster-aware precision medicineAmanda M. Buch, Conor Liston, Logan Grosenick. 136-144 [doi]
- A Specialized Semismooth Newton Method for Kernel-Based Optimal TransportTianyi Lin, Marco Cuturi, Michael I. Jordan. 145-153 [doi]
- Local Causal Discovery with Linear non-Gaussian Cyclic ModelsHaoyue Dai, Ignavier Ng, Yujia Zheng, Zhengqing Gao, Kun Zhang 0001. 154-162 [doi]
- Density Uncertainty Layers for Reliable Uncertainty EstimationYookoon Park, David M. Blei. 163-171 [doi]
- Double InfoGAN for Contrastive AnalysisFlorence Carton, Robin Louiset, Pietro Gori. 172-180 [doi]
- Is this model reliable for everyone? Testing for strong calibrationJean Feng, Alexej Gossmann, Romain Pirracchio, Nicholas Petrick, Gene Pennello, Berkman Sahiner. 181-189 [doi]
- An Online Bootstrap for Time SeriesNicolai Palm, Thomas Nagler. 190-198 [doi]
- Better Representations via Adversarial Training in Pre-Training: A Theoretical PerspectiveYue Xing 0002, Xiaofeng Lin, Qifan Song, Yi Xu, Belinda Zeng, Guang Cheng 0003. 199-207 [doi]
- Solving Attention Kernel Regression Problem via Pre-conditionerZhao Song 0002, Junze Yin, Lichen Zhang 0003. 208-216 [doi]
- Pixel-wise Smoothing for Certified Robustness against Camera Motion PerturbationsHanjiang Hu, Zuxin Liu, Linyi Li, Jiacheng Zhu, Ding Zhao. 217-225 [doi]
- Identifying Copeland Winners in Dueling Bandits with IndifferencesViktor Bengs, Björn Haddenhorst, Eyke Hüllermeier. 226-234 [doi]
- Linear Convergence of Black-Box Variational Inference: Should We Stick the Landing?Kyurae Kim, Yian Ma, Jacob Gardner. 235-243 [doi]
- Fast Dynamic Sampling for Determinantal Point ProcessesZhao Song 0002, Junze Yin, Lichen Zhang 0003, Ruizhe Zhang 0001. 244-252 [doi]
- Best Arm Identification with Resource ConstraintsZitian Li, Wang Chi Cheung. 253-261 [doi]
- Neural McKean-Vlasov Processes: Distributional Dependence in Diffusion ProcessesHaoming Yang, Ali-Hasan, Yuting Ng, Vahid Tarokh. 262-270 [doi]
- HintMiner: Automatic Question Hints Mining From Q&A Web Posts with Language Model via Self-Supervised LearningZhenyu Zhang, Jiudong Yang. 271-279 [doi]
- A Primal-Dual-Critic Algorithm for Offline Constrained Reinforcement LearningKihyuk Hong, Yuhang Li, Ambuj Tewari. 280-288 [doi]
- On the Statistical Efficiency of Mean-Field Reinforcement Learning with General Function ApproximationJiawei Huang, Batuhan Yardim, Niao He. 289-297 [doi]
- Breaking isometric ties and introducing priors in Gromov-Wasserstein distancesPinar Demetci, Quang-Huy Tran, Ievgen Redko, Ritambhara Singh. 298-306 [doi]
- Enhancing In-context Learning via Linear Probe CalibrationMomin Abbas, Yi Zhou, Parikshit Ram, Nathalie Baracaldo, Horst Samulowitz, Theodoros Salonidis, Tianyi Chen. 307-315 [doi]
- DNNLasso: Scalable Graph Learning for Matrix-Variate DataMeixia Lin, Yangjing Zhang. 316-324 [doi]
- Fast 1-Wasserstein distance approximations using greedy strategiesGuillaume Houry, Han Bao 0002, Han Zhao 0002, Makoto Yamada. 325-333 [doi]
- Pure Exploration in Bandits with Linear ConstraintsEmil Carlsson, Debabrota Basu, Fredrik D. Johansson, Devdatt P. Dubhashi. 334-342 [doi]
- Emergent specialization from participation dynamics and multi-learner retrainingSarah Dean, Mihaela Curmei, Lillian J. Ratliff, Jamie Morgenstern, Maryam Fazel. 343-351 [doi]
- Optimal Sparse Survival TreesRui Zhang, Rui Xin, Margo I. Seltzer, Cynthia Rudin. 352-360 [doi]
- TenGAN: Pure Transformer Encoders Make an Efficient Discrete GAN for De Novo Molecular GenerationChen Li 0027, Yoshihiro Yamanishi. 361-369 [doi]
- Explanation-based Training with Differentiable Insertion/Deletion Metric-aware RegularizersYuya Yoshikawa, Tomoharu Iwata. 370-378 [doi]
- Multi-armed bandits with guaranteed revenue per armDorian Baudry, Nadav Merlis, Mathieu Benjamin Molina, Hugo Richard, Vianney Perchet. 379-387 [doi]
- Constant or Logarithmic Regret in Asynchronous Multiplayer Bandits with Limited CommunicationHugo Richard, Etienne Boursier, Vianney Perchet. 388-396 [doi]
- Error bounds for any regression model using Gaussian processes with gradient informationRafael Savvides, Hoang Phuc Hau Luu, Kai Puolamäki. 397-405 [doi]
- Robust Non-linear Normalization of Heterogeneous Feature Distributions with Adaptive Tanh-EstimatorsFelip Guimerà Cuevas, Helmut Schmid. 406-414 [doi]
- Learning Granger Causality from Instance-wise Self-attentive Hawkes ProcessesDongxia Wu, Tsuyoshi Idé, Georgios Kollias, Jirí Navrátil 0001, Aurélie C. Lozano, Naoki Abe, Yian Ma, Rose Yu. 415-423 [doi]
- P-tensors: a General Framework for Higher Order Message Passing in Subgraph Neural NetworksAndrew R. Hands, Tianyi Sun, Risi Kondor. 424-432 [doi]
- Faster Convergence with MultiWay PreferencesAadirupa Saha, Vitaly Feldman, Yishay Mansour, Tomer Koren. 433-441 [doi]
- Testing Generated Distributions in GANs to Penalize Mode CollapseYanxiang Gong, Zhiwei Xie 0002, Mei Xie, Xin Ma 0004. 442-450 [doi]
- The Galerkin method beats Graph-Based Approaches for Spectral AlgorithmsVivien A Cabannnes, Francis Bach. 451-459 [doi]
- Online Distribution Learning with Local Privacy ConstraintsJin Sima, Changlong Wu, Olgica Milenkovic, Wojciech Szpankowski. 460-468 [doi]
- Minimax optimal density estimation using a shallow generative model with a one-dimensional latent variableHyeok Kyu Kwon, Minwoo Chae. 469-477 [doi]
- Delegating Data Collection in Decentralized Machine LearningNivasini Ananthakrishnan, Stephen Bates, Michael I. Jordan, Nika Haghtalab. 478-486 [doi]
- Adaptive Compression in Federated Learning via Side InformationBerivan Isik, Francesco Pase, Deniz Gündüz, Sanmi Koyejo, Tsachy Weissman, Michele Zorzi. 487-495 [doi]
- Adaptive Batch Sizes for Active Learning: A Probabilistic Numerics ApproachMasaki Adachi, Satoshi Hayakawa, Martin Jørgensen, Xingchen Wan, Vu Nguyen, Harald Oberhauser, Michael A. Osborne. 496-504 [doi]
- Looping in the Human: Collaborative and Explainable Bayesian OptimizationMasaki Adachi, Brady Planden, David A. Howey, Michael A. Osborne, Sebastian Orbell, Natalia Ares, Krikamol Muandet, Siu Lun Chau. 505-513 [doi]
- Efficient Quantum Agnostic Improper Learning of Decision TreesSagnik Chatterjee, SAPV Tharrmashastha, Debajyoti Bera. 514-522 [doi]
- Meta Learning in Bandits within shared affine SubspacesSteven Bilaj, Sofien Dhouib, Setareh Maghsudi. 523-531 [doi]
- VEC-SBM: Optimal Community Detection with Vectorial Edges CovariatesGuillaume Braun, Masashi Sugiyama. 532-540 [doi]
- Robust Offline Reinforcement Learning with Heavy-Tailed RewardsJin Zhu, Runzhe Wan, Zhengling Qi, Shikai Luo, Chengchun Shi. 541-549 [doi]
- The Risks of Recourse in Binary ClassificationHidde Fokkema, Damien Garreau, Tim van Erven. 550-558 [doi]
- Prior-dependent analysis of posterior sampling reinforcement learning with function approximationYingru Li, Zhi-Quan Luo. 559-567 [doi]
- Graph Partitioning with a Move BudgetMina Dalirrooyfard, Elaheh Fata, Majid Behbahani, Yuriy Nevmyvaka. 568-576 [doi]
- On Ranking-based Tests of IndependenceMyrto Limnios, Stéphan Clémençon. 577-585 [doi]
- Structured Transforms Across Spaces with Cost-Regularized Optimal TransportOthmane Sebbouh, Marco Cuturi, Gabriel Peyré. 586-594 [doi]
- Leveraging Ensemble Diversity for Robust Self-Training in the Presence of Sample Selection BiasAmbroise Odonnat, Vasilii Feofanov, Ievgen Redko. 595-603 [doi]
- Clustering Items From Adaptively Collected Inconsistent FeedbackShubham Gupta, Peter W. J. Staar, Christian de Sainte Marie. 604-612 [doi]
- Compression with Exact Error Distribution for Federated LearningMahmoud Hegazy, Rémi Leluc, Cheuk Ting Li, Aymeric Dieuleveut. 613-621 [doi]
- Deep anytime-valid hypothesis testingTeodora Pandeva, Patrick Forré, Aaditya Ramdas, Shubhanshu Shekhar. 622-630 [doi]
- Federated Linear Contextual Bandits with Heterogeneous ClientsEthan Blaser, Chuanhao Li, Hongning Wang. 631-639 [doi]
- LEDetection: A Simple Framework for Semi-Supervised Few-Shot Object DetectionPhi Vu Tran. 640-648 [doi]
- AsGrad: A Sharp Unified Analysis of Asynchronous-SGD AlgorithmsRustem Islamov, Mher Safaryan, Dan Alistarh. 649-657 [doi]
- Directional Optimism for Safe Linear BanditsSpencer Hutchinson, Berkay Turan, Mahnoosh Alizadeh. 658-666 [doi]
- Theory-guided Message Passing Neural Network for Probabilistic InferenceZijun Cui, Hanjing Wang, Tian Gao, Kartik Talamadupula, Qiang Ji. 667-675 [doi]
- Understanding Generalization of Federated Learning via Stability: Heterogeneity MattersZhenyu Sun, Xiaochun Niu, Ermin Wei. 676-684 [doi]
- Mechanics of Next Token Prediction with Self-AttentionYingcong Li, Yixiao Huang, Muhammed Emrullah Ildiz, Ankit Singh Rawat, Samet Oymak. 685-693 [doi]
- Generalization Bounds of Nonconvex-(Strongly)-Concave Stochastic Minimax OptimizationSiqi Zhang, Yifan Hu, Liang Zhang, Niao He. 694-702 [doi]
- TransFusion: Covariate-Shift Robust Transfer Learning for High-Dimensional RegressionZelin He, Ying Sun, Runze Li. 703-711 [doi]
- Fusing Individualized Treatment Rules Using Secondary OutcomesDaiqi Gao, Yuanjia Wang, Donglin Zeng. 712-720 [doi]
- Exploration via linearly perturbed loss minimisationDavid Janz, Shuai Liu, Alex Ayoub, Csaba Szepesvári. 721-729 [doi]
- Proximal Causal Inference for Synthetic Control with SurrogatesJizhou Liu, Eric Tchetgen Tchetgen, Carlos Varjão. 730-738 [doi]
- Reparameterized Variational Rejection SamplingMartin Jankowiak, Du Phan. 739-747 [doi]
- E(3)-Equivariant Mesh Neural NetworksThuan Anh Trang, Nhat-Khang Ngo, Daniel T. Levy, Ngoc Thieu Vo, Siamak Ravanbakhsh, Truong-Son Hy. 748-756 [doi]
- A General Algorithm for Solving Rank-one Matrix SensingLianke Qin, Zhao Song 0002, Ruizhe Zhang 0001. 757-765 [doi]
- Oracle-Efficient Pessimism: Offline Policy Optimization In Contextual BanditsLequn Wang, Akshay Krishnamurthy, Alex Slivkins. 766-774 [doi]
- The Solution Path of SLOPEXavier Dupuis, Patrick Tardivel. 775-783 [doi]
- Lower-level Duality Based Reformulation and Majorization Minimization Algorithm for Hyperparameter OptimizationHe Chen, Haochen Xu, Rujun Jiang, Anthony Man-Cho So. 784-792 [doi]
- A Unified Framework for Discovering Discrete SymmetriesPavan Karjol, Rohan Kashyap, Aditya Gopalan, A. P. Prathosh. 793-801 [doi]
- Recovery Guarantees for Distributed-OMPChen Amiraz, Robert Krauthgamer, Boaz Nadler. 802-810 [doi]
- Asymptotic Characterisation of the Performance of Robust Linear Regression in the Presence of OutliersMatteo Vilucchio, Emanuele Troiani, Vittorio Erba, Florent Krzakala. 811-819 [doi]
- Riemannian Laplace Approximation with the Fisher MetricHanlin Yu, Marcelo Hartmann, Bernardo Williams Moreno Sanchez, Mark Girolami, Arto Klami. 820-828 [doi]
- Beyond Bayesian Model Averaging over Paths in Probabilistic Programs with Stochastic SupportTim Reichelt, Luke Ong, Tom Rainforth. 829-837 [doi]
- Sharp error bounds for imbalanced classification: how many examples in the minority class?Anass Aghbalou, Anne Sabourin, François Portier. 838-846 [doi]
- Making Better Use of Unlabelled Data in Bayesian Active LearningFreddie Bickford Smith, Adam Foster 0001, Tom Rainforth. 847-855 [doi]
- Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization ProblemsNikita Puchkin, Eduard Gorbunov, Nikolay Kutuzov, Alexander V. Gasnikov. 856-864 [doi]
- Multi-Domain Causal Representation Learning via Weak Distributional InvariancesKartik Ahuja, Amin Mansouri, Yixin Wang. 865-873 [doi]
- Unsupervised Novelty Detection in Pretrained Representation Space with Locally Adapted Likelihood RatioAmirhossein Ahmadian, Yifan Ding, Gabriel Eilertsen, Fredrik Lindsten. 874-882 [doi]
- Adaptive Quasi-Newton and Anderson Acceleration Framework with Explicit Global (Accelerated) Convergence RatesDamien Scieur. 883-891 [doi]
- BOBA: Byzantine-Robust Federated Learning with Label SkewnessWenxuan Bao, Jun Wu, Jingrui He. 892-900 [doi]
- A White-Box False Positive Adversarial Attack Method on Contrastive Loss Based Offline Handwritten Signature Verification ModelsZhongliang Guo, Weiye Li, Yifei Qian, Ognjen Arandjelovic, Lei Fang. 901-909 [doi]
- Categorical Generative Model Evaluation via Synthetic Distribution CoarseningFlorence Regol, Mark Coates. 910-918 [doi]
- Monitoring machine learning-based risk prediction algorithms in the presence of performativityJean Feng, Alexej Gossmann, Gene Pennello, Nicholas Petrick, Berkman Sahiner, Romain Pirracchio. 919-927 [doi]
- Learning-Based Algorithms for Graph Searching ProblemsAdela Frances DePavia, Erasmo Tani, Ali Vakilian. 928-936 [doi]
- Autoregressive BanditsFrancesco Bacchiocchi, Gianmarco Genalti, Davide Maran, Marco Mussi, Marcello Restelli, Nicola Gatti 0001, Alberto Maria Metelli. 937-945 [doi]
- DeepFDR: A Deep Learning-based False Discovery Rate Control Method for Neuroimaging DataTaehyo Kim, Hai Shu, Qiran Jia, Mony de Leon. 946-954 [doi]
- Enhancing Hypergradients Estimation: A Study of Preconditioning and ReparameterizationZhenzhang Ye, Gabriel Peyré, Daniel Cremers, Pierre Ablin. 955-963 [doi]
- MINTY: Rule-based models that minimize the need for imputing features with missing valuesLena Stempfle, Fredrik D. Johansson. 964-972 [doi]
- Multi-Dimensional Hyena for Spatial Inductive BiasItamar Zimerman, Lior Wolf. 973-981 [doi]
- Graph Machine Learning through the Lens of Bilevel OptimizationAmber Yijia Zheng, Tong He 0002, Yixuan Qiu, Minjie Wang, David Wipf. 982-990 [doi]
- Robust Sparse VotingYoussef Allouah, Rachid Guerraoui, Lê Nguyên Hoang, Oscar Villemaud. 991-999 [doi]
- Data-Efficient Contrastive Language-Image Pretraining: Prioritizing Data Quality over QuantitySiddharth Joshi, Arnav Jain, Ali Payani, Baharan Mirzasoleiman. 1000-1008 [doi]
- Efficient Low-Dimensional Compression of Overparameterized ModelsSoo Min Kwon, Zekai Zhang, Dogyoon Song, Laura Balzano, Qing Qu 0001. 1009-1017 [doi]
- Data-Adaptive Probabilistic Likelihood Approximation for Ordinary Differential EquationsMohan Wu, Martin Lysy. 1018-1026 [doi]
- Fairness in Submodular Maximization over a Matroid ConstraintMarwa El Halabi, Jakub Tarnawski, Ashkan Norouzi-Fard, Thuy Duong Vuong. 1027-1035 [doi]
- Unified Transfer Learning in High-Dimensional Linear RegressionShuo Shuo Liu. 1036-1044 [doi]
- Hidden yet quantifiable: A lower bound for confounding strength using randomized trialsPiersilvio De Bartolomeis, Javier Abad Martinez, Konstantin Donhauser, Fanny Yang. 1045-1053 [doi]
- Towards Achieving Sub-linear Regret and Hard Constraint Violation in Model-free RLArnob Ghosh, Xingyu Zhou 0001, Ness B. Shroff. 1054-1062 [doi]
- Distributionally Robust Quickest Change Detection using Wasserstein Uncertainty SetsLiyan Xie, Yuchen Liang, Venugopal V. Veeravalli. 1063-1071 [doi]
- Quantifying Uncertainty in Natural Language Explanations of Large Language ModelsSree Harsha Tanneru, Chirag Agarwal, Himabindu Lakkaraju. 1072-1080 [doi]
- Submodular Minimax Optimization: Finding Effective SetsLoay Raed Mualem, Ethan R. Elenberg, Moran Feldman, Amin Karbasi. 1081-1089 [doi]
- Effect of Ambient-Intrinsic Dimension Gap on Adversarial VulnerabilityRajdeep Haldar, Yue Xing 0002, Qifan Song. 1090-1098 [doi]
- Information-theoretic Analysis of Bayesian Test Data SensitivityFutoshi Futami, Tomoharu Iwata. 1099-1107 [doi]
- Scalable Algorithms for Individual Preference Stable ClusteringRon Mosenzon, Ali Vakilian. 1108-1116 [doi]
- Orthogonal Gradient Boosting for Simpler Additive Rule EnsemblesFan Yang, Pierre Le Bodic, Michael Kamp, Mario Boley. 1117-1125 [doi]
- When No-Rejection Learning is Consistent for Regression with RejectionXiaocheng Li, Shang Liu, Chunlin Sun, Hanzhao Wang. 1126-1134 [doi]
- Filter, Rank, and Prune: Learning Linear Cyclic Gaussian Graphical ModelsSoheun Yi, Sanghack Lee. 1135-1143 [doi]
- Robust variance-regularized risk minimization with concomitant scalingMatthew J. Holland. 1144-1152 [doi]
- Fast and Adversarial Robust Kernelized SDU LearningYajing Fan, Wanli Shi, Yi Chang, Bin Gu 0001. 1153-1161 [doi]
- Learning Sampling Policy to Achieve Fewer Queries for Zeroth-Order OptimizationZhou Zhai, Wanli Shi, Heng Huang, Yi Chang, Bin Gu 0001. 1162-1170 [doi]
- Efficient Graph Laplacian Estimation by Proximal NewtonYakov Medvedovsky, Eran Treister, Tirza S. Routtenberg. 1171-1179 [doi]
- Adaptive Experiment Design with Synthetic ControlsAlihan Hüyük, Zhaozhi Qian, Mihaela van der Schaar. 1180-1188 [doi]
- Online non-parametric likelihood-ratio estimation by Pearson-divergence functional minimizationAlejandro D. de la Concha Duarte, Nicolas Vayatis, Argyris Kalogeratos. 1189-1197 [doi]
- Uncertainty Matters: Stable Conclusions under Unstable Assessment of Fairness ResultsAinhize Barrainkua, Paula Gordaliza, Jose A. Lozano, Novi Quadrianto. 1198-1206 [doi]
- Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved RatesAhmad Rammal, Kaja Gruntkowska, Nikita Fedin, Eduard Gorbunov, Peter Richtárik. 1207-1215 [doi]
- Best-of-Both-Worlds Algorithms for Linear Contextual BanditsYuko Kuroki, Alberto Rumi, Taira Tsuchiya, Fabio Vitale, Nicolò Cesa-Bianchi. 1216-1224 [doi]
- Fixed-Budget Real-Valued Combinatorial Pure Exploration of Multi-Armed BanditShintaro Nakamura, Masashi Sugiyama. 1225-1233 [doi]
- Scalable Learning of Item Response Theory ModelsSusanne Frick, Amer Krivosija, Alexander Munteanu. 1234-1242 [doi]
- Corruption-Robust Offline Two-Player Zero-Sum Markov GamesAndi Nika, Debmalya Mandal, Adish Singla, Goran Radanovic. 1243-1251 [doi]
- Risk Seeking Bayesian Optimization under Uncertainty for Obtaining ExtremumShogo Iwazaki, Tomohiko Tanabe, Mitsuru Irie, Shion Takeno, Yu Inatsu. 1252-1260 [doi]
- Quantized Fourier and Polynomial Features for more Expressive Tensor Network ModelsFrederiek Wesel, Kim Batselier. 1261-1269 [doi]
- Fair Soft ClusteringRune D. Kjærsgaard, Pekka Parviainen, Saket Saurabh 0001, Madhumita Kundu, Line H. Clemmensen. 1270-1278 [doi]
- Simulation-Free Schrödinger Bridges via Score and Flow MatchingAlexander Tong 0001, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume Huguet, Guy Wolf, Yoshua Bengio. 1279-1287 [doi]
- Generating and Imputing Tabular Data via Diffusion and Flow-based Gradient-Boosted TreesAlexia Jolicoeur-Martineau, Kilian Fatras, Tal Kachman. 1288-1296 [doi]
- Gaussian process regression with Sliced Wasserstein Weisfeiler-Lehman graph kernelsRaphaël Carpintero Perez, Sébastien Da Veiga, Josselin Garnier, Brian Staber. 1297-1305 [doi]
- Intrinsic Gaussian Vector Fields on ManifoldsDaniel Robert-Nicoud, Andreas Krause 0001, Viacheslav Borovitskiy. 1306-1314 [doi]
- A Unifying Variational Framework for Gaussian Process Motion PlanningLucas Cosier, Rares Iordan, Sicelukwanda N. T. Zwane, Giovanni Franzese, James T. Wilson, Marc Peter Deisenroth, Alexander Terenin, Yasemin Bekiroglu. 1315-1323 [doi]
- MMD-based Variable Importance for Distributional Random ForestClément Bénard, Jeffrey Näf, Julie Josse. 1324-1332 [doi]
- Efficiently Computable Safety Bounds for Gaussian Processes in Active LearningJörn Tebbe, Christoph Zimmer, Ansgar Steland, Markus Lange-Hegermann, Fabian Mies. 1333-1341 [doi]
- Federated Learning For Heterogeneous Electronic Health Records Utilising Augmented Temporal Graph Attention NetworksSoheila Molaei, Anshul Thakur, Ghazaleh Niknam, Andrew A. S. Soltan, Hadi Zare 0001, David A. Clifton. 1342-1350 [doi]
- Adaptive Discretization for Event PredicTion (ADEPT)Jimmy Hickey, Ricardo Henao, Daniel Wojdyla, Michael J. Pencina, Matthew Engelhard. 1351-1359 [doi]
- Generalization Bounds for Label Noise Stochastic Gradient DescentJung Eun Huh, Patrick Rebeschini. 1360-1368 [doi]
- Adaptive Parametric Prototype Learning for Cross-Domain Few-Shot ClassificationMarzi Heidari, Abdullah Alchihabi, Qing En, Yuhong Guo. 1369-1377 [doi]
- Analyzing Explainer Robustness via Probabilistic Lipschitzness of Prediction FunctionsZulqarnain Khan, Davin Hill, Aria Masoomi, Joshua T. Bone, Jennifer G. Dy. 1378-1386 [doi]
- Importance Matching Lemma for Lossy Compression with Side InformationBuu Phan, Ashish Khisti, Christos Louizos. 1387-1395 [doi]
- Certified private data release for sparse Lipschitz functionsKonstantin Donhauser, Johan Lokna, Amartya Sanyal, March Boedihardjo, Robert Hönig, Fanny Yang. 1396-1404 [doi]
- Sequence Length Independent Norm-Based Generalization Bounds for TransformersJacob Trauger, Ambuj Tewari. 1405-1413 [doi]
- Subsampling Error in Stochastic Gradient Langevin DiffusionsKexin Jin, ChenGuang Liu, Jonas Latz. 1414-1422 [doi]
- Analysis of Privacy Leakage in Federated Large Language ModelsMinh N. Vu, Truc D. T. Nguyen, Tre' R. Jeter, My T. Thai. 1423-1431 [doi]
- Exploring the Power of Graph Neural Networks in Solving Linear Optimization ProblemsChendi Qian, Didier Chételat, Christopher Morris 0001. 1432-1440 [doi]
- Cross-model Mutual Learning for Exemplar-based Medical Image SegmentationQing En, Yuhong Guo. 1441-1449 [doi]
- Online Calibrated and Conformal Prediction Improves Bayesian OptimizationShachi Deshpande, Charles Marx, Volodymyr Kuleshov. 1450-1458 [doi]
- Offline Policy Evaluation and Optimization Under ConfoundingChinmaya Kausik, Yangyi Lu, Kevin Tan, Maggie Makar, Yixin Wang, Ambuj Tewari. 1459-1467 [doi]
- Confident Feature RankingBitya Neuhof, Yuval Benjamini. 1468-1476 [doi]
- Central Limit Theorem for Two-Timescale Stochastic Approximation with Markovian Noise: Theory and ApplicationsJie Hu, Vishwaraj Doshi, Do Young Eun. 1477-1485 [doi]
- Taming False Positives in Out-of-Distribution Detection with Human FeedbackHarit Vishwakarma, Heguang Lin, Ramya Korlakai Vinayak. 1486-1494 [doi]
- On the Privacy of Selection Mechanisms with Gaussian NoiseJonathan Lebensold, Doina Precup, Borja Balle. 1495-1503 [doi]
- Transductive conformal inference with adaptive scoresUlysse Gazin, Gilles Blanchard, Étienne Roquain. 1504-1512 [doi]
- Learning Latent Partial Matchings with Gumbel-IPF NetworksHedda Cohen Indelman, Tamir Hazan. 1513-1521 [doi]
- On Counterfactual Metrics for Social Welfare: Incentives, Ranking, and Information AsymmetrySerena Lutong Wang, Stephen Bates, P. M. Aronow, Michael I. Jordan. 1522-1530 [doi]
- Data-Driven Online Model Selection With Regret GuaranteesChristoph Dann, Claudio Gentile, Aldo Pacchiano. 1531-1539 [doi]
- Integrating Uncertainty Awareness into Conformalized Quantile RegressionRaphael Rossellini, Rina Foygel Barber, Rebecca Willett. 1540-1548 [doi]
- On the Expected Size of Conformal Prediction SetsGuneet S. Dhillon, George Deligiannidis, Tom Rainforth. 1549-1557 [doi]
- Estimation of partially known Gaussian graphical models with score-based structural priorsMartin Sevilla, Antonio G. Marques, Santiago Segarra. 1558-1566 [doi]
- Model-Based Best Arm Identification for Decreasing BanditsSho Takemori, Yuhei Umeda, Aditya Gopalan. 1567-1575 [doi]
- Thompson Sampling Itself is Differentially PrivateTingting Ou, Rachel Cummings, Marco Avella. 1576-1584 [doi]
- A/B Testing and Best-arm Identification for Linear Bandits with Robustness to Non-stationarityZhihan Xiong, Romain Camilleri, Maryam Fazel, Lalit Jain, Kevin G. Jamieson. 1585-1593 [doi]
- Fair Supervised Learning with A Simple Random Sampler of Sensitive AttributesJinwon Sohn, Qifan Song, Guang Lin. 1594-1602 [doi]
- Absence of spurious solutions far from ground truth: A low-rank analysis with high-order lossesZiye Ma, Ying Chen, Javad Lavaei, Somayeh Sojoudi. 1603-1611 [doi]
- FedFisher: Leveraging Fisher Information for One-Shot Federated LearningDivyansh Jhunjhunwala, Shiqiang Wang 0001, Gauri Joshi. 1612-1620 [doi]
- Causal Discovery under Off-Target InterventionsDavin Choo, Kirankumar Shiragur, Caroline Uhler. 1621-1629 [doi]
- Feasible Q-Learning for Average Reward Reinforcement LearningYing Jin, Ramki Gummadi, Zhengyuan Zhou, Jose H. Blanchet. 1630-1638 [doi]
- Joint control variate for faster black-box variational inferenceXi Wang, Tomas Geffner, Justin Domke. 1639-1647 [doi]
- Adaptivity of Diffusion Models to Manifold StructuresRong Tang, Yun Yang. 1648-1656 [doi]
- Conformalized Deep Splines for Optimal and Efficient Prediction SetsNathaniel Diamant, Ehsan Hajiramezanali, Tommaso Biancalani, Gabriele Scalia. 1657-1665 [doi]
- Accuracy-Preserving Calibration via Statistical Modeling on Probability SimplexYasushi Esaki, Akihiro Nakamura, Keisuke Kawano, Ryoko Tokuhisa, Takuro Kutsuna. 1666-1674 [doi]
- Smoothness-Adaptive Dynamic Pricing with Nonparametric Demand LearningZeqi Ye, Hansheng Jiang. 1675-1683 [doi]
- Optimal Exploration is no harder than Thompson SamplingZhaoqi Li, Kevin G. Jamieson, Lalit Jain. 1684-1692 [doi]
- Sample Complexity Characterization for Linear Contextual MDPsJunze Deng, Yuan Cheng, Shaofeng Zou, Yingbin Liang. 1693-1701 [doi]
- Sample-Efficient Personalization: Modeling User Parameters as Low Rank Plus Sparse ComponentsSoumyabrata Pal, Prateek Varshney, Gagan Madan, Prateek Jain 0002, Abhradeep Thakurta, Gaurav Aggarwal, Pradeep Shenoy, Gaurav Srivastava 0004. 1702-1710 [doi]
- Queuing dynamics of asynchronous Federated LearningLouis Leconte, Matthieu Jonckheere, Sergey Samsonov, Eric Moulines. 1711-1719 [doi]
- Learning Populations of Preferences via Pairwise Comparison QueriesGokcan Tatli, Yi Chen, Ramya Korlakai Vinayak. 1720-1728 [doi]
- A Neural Architecture Predictor based on GNN-Enhanced TransformerXunzhi Xiang, Kun Jing, Jungang Xu. 1729-1737 [doi]
- Efficient Neural Architecture Design via Capturing Architecture-Performance Joint DistributionYue Liu, Ziyi Yu, Zitu Liu, WenJie Tian. 1738-1746 [doi]
- Analysis of Using Sigmoid Loss for Contrastive LearningChungpa Lee, Joonhwan Chang, Jy-yong Sohn. 1747-1755 [doi]
- Robust Data Clustering with Outliers via Transformed Tensor Low-Rank RepresentationTong Wu. 1756-1764 [doi]
- Robust SVD Made Easy: A fast and reliable algorithm for large-scale data analysisSangil Han, Sungkyu Jung, Kyoowon Kim. 1765-1773 [doi]
- Regret Bounds for Risk-sensitive Reinforcement Learning with Lipschitz Dynamic Risk MeasuresHao Liang, Zhiquan Luo. 1774-1782 [doi]
- Neural Additive Models for Location Scale and Shape: A Framework for Interpretable Neural Regression Beyond the MeanAnton Frederik Thielmann, René-Marcel Kruse, Thomas Kneib, Benjamin Säfken. 1783-1791 [doi]
- On The Temporal Domain of Differential Equation Inspired Graph Neural NetworksMoshe Eliasof, Eldad Haber, Eran Treister, Carola-Bibiane Schönlieb. 1792-1800 [doi]
- Diagonalisation SGD: Fast & Convergent SGD for Non-Differentiable Models via Reparameterisation and SmoothingDominik Wagner, Basim Khajwal, Luke Ong. 1801-1809 [doi]
- Tuning-Free Maximum Likelihood Training of Latent Variable Models via Coin BettingLouis Sharrock, Daniel Dodd, Christopher Nemeth. 1810-1818 [doi]
- Bayesian Semi-structured Subspace InferenceDaniel Dold, David Rügamer, Beate Sick, Oliver Dürr. 1819-1827 [doi]
- CAD-DA: Controllable Anomaly Detection after Domain Adaptation by Statistical InferenceVo Nguyen Le Duy, Hsuan-Tien Lin, Ichiro Takeuchi. 1828-1836 [doi]
- Provable local learning rule by expert aggregation for a Hawkes networkSophie Jaffard, Samuel Vaiter, Alexandre Muzy, Patricia Reynaud-Bouret. 1837-1845 [doi]
- Multitask Online Learning: Listen to the Neighborhood BuzzJuliette Achddou, Nicolò Cesa-Bianchi, Pierre Laforgue. 1846-1854 [doi]
- Structural perspective on constraint-based learning of Markov networksTuukka Korhonen, Fedor V. Fomin, Pekka Parviainen. 1855-1863 [doi]
- DAGnosis: Localized Identification of Data Inconsistencies using StructuresNicolas Huynh, Jeroen Berrevoets, Nabeel Seedat, Jonathan Crabbé, Zhaozhi Qian, Mihaela van der Schaar. 1864-1872 [doi]
- Bures-Wasserstein Means of GraphsIsabel Haasler, Pascal Frossard. 1873-1881 [doi]
- Time to Cite: Modeling Citation Networks using the Dynamic Impact Single-Event Embedding ModelNikolaos Nakis, Abdulkadir Çelikkanat, Louis Boucherie, Sune Lehmann, Morten Mørup. 1882-1890 [doi]
- Extended Deep Adaptive Input Normalization for Preprocessing Time Series Data for Neural NetworksMarcus A. K. September, Francesco Sanna Passino, Leonie Goldmann, Anton Hinel. 1891-1899 [doi]
- Restricted Isometry Property of Rank-One Measurements with Random Unit-Modulus VectorsWei Zhang, Zhenni Wang. 1900-1908 [doi]
- Variational Gaussian Process Diffusion ProcessesPrakhar Verma, Vincent Adam, Arno Solin. 1909-1917 [doi]
- Positivity-free Policy Learning with Observational DataPan Zhao, Antoine Chambaz, Julie Josse, Shu Yang. 1918-1926 [doi]
- Causal Modeling with Stationary DiffusionsLars Lorch, Andreas Krause 0001, Bernhard Schölkopf. 1927-1935 [doi]
- Learning Dynamics in Linear VAE: Posterior Collapse Threshold, Superfluous Latent Space Pitfalls, and Speedup with KL AnnealingYuma Ichikawa, Koji Hukushima. 1936-1944 [doi]
- A 4-Approximation Algorithm for Min Max Correlation ClusteringHolger S. G. Heidrich, Jannik Irmai, Bjoern Andres. 1945-1953 [doi]
- Ethics in Action: Training Reinforcement Learning Agents for Moral Decision-making In Text-based Adventure GamesWeichen Li, Rati Devidze, Waleed Mustafa, Sophie Fellenz. 1954-1962 [doi]
- Interpretability Guarantees with Merlin-Arthur ClassifiersStephan Wäldchen, Kartikey Sharma, Berkant Turan, Max Zimmer, Sebastian Pokutta. 1963-1971 [doi]
- Classifier Calibration with ROC-Regularized Isotonic RegressionEugene Berta, Francis R. Bach, Michael I. Jordan. 1972-1980 [doi]
- Scalable Meta-Learning with Gaussian ProcessesPetru Tighineanu, Lukas Grossberger, Paul Baireuther, Kathrin Skubch, Stefan Falkner, Julia Vinogradska, Felix Berkenkamp. 1981-1989 [doi]
- An Efficient Stochastic Algorithm for Decentralized Nonconvex-Strongly-Concave Minimax OptimizationLesi Chen, Haishan Ye, Luo Luo. 1990-1998 [doi]
- Vector Quantile Regression on ManifoldsMarco Pegoraro 0002, Sanketh Vedula, Aviv Rosenberg 0001, Irene Tallini, Emanuele Rodolà, Alex M. Bronstein. 1999-2007 [doi]
- Near-Optimal Convex Simple Bilevel Optimization with a Bisection MethodJiulin Wang, Xu Shi, Rujun Jiang. 2008-2016 [doi]
- Tackling the XAI Disagreement Problem with Regional ExplanationsGabriel Laberge, Yann Batiste Pequignot, Mario Marchand, Foutse Khomh. 2017-2025 [doi]
- Training Implicit Generative Models via an Invariant Statistical LossJosé Manuel de Frutos, Pablo M. Olmos, Manuel Alberto Vazquez Lopez, Joaquín Míguez. 2026-2034 [doi]
- RL in Markov Games with Independent Function Approximation: Improved Sample Complexity Bound under the Local Access ModelJunyi Fan, Yuxuan Han, Jialin Zeng, Jian-Feng Cai 0001, Yang Wang, Yang Xiang, Jiheng Zhang. 2035-2043 [doi]
- Convergence to Nash Equilibrium and No-regret Guarantee in (Markov) Potential GamesJing Dong 0008, Baoxiang Wang 0001, Yaoliang Yu. 2044-2052 [doi]
- GmGM: a fast multi-axis Gaussian graphical modelEthan B. Andrew, David Westhead, Luisa Cutillo. 2053-2061 [doi]
- On Convergence in Wasserstein Distance and f-divergence Minimization ProblemsCheuk Ting Li, Jingwei Zhang, Farzan Farnia. 2062-2070 [doi]
- Sparse and Faithful Explanations Without Sparse ModelsYiyang Sun, Zhi Chen 0009, Vittorio Orlandi, Tong Wang 0011, Cynthia Rudin. 2071-2079 [doi]
- Extragradient Type Methods for Riemannian Variational Inequality ProblemsZihao Hu, Guanghui Wang, Xi Wang, Andre Wibisono, Jacob D. Abernethy, Molei Tao. 2080-2088 [doi]
- Learning Sparse Codes with Entropy-Based ELBOsDmytro Velychko, Simon Damm, Asja Fischer, Jörg Lücke. 2089-2097 [doi]
- Near Optimal Adversarial Attacks on Stochastic Bandits and Defenses with Smoothed ResponsesShiliang Zuo. 2098-2106 [doi]
- Robust Approximate Sampling via Stochastic Gradient Barker DynamicsLorenzo Mauri, Giacomo Zanella. 2107-2115 [doi]
- Solving General Noisy Inverse Problem via Posterior Sampling: A Policy Gradient ViewpointHaoyue Tang, Tian Xie, Aosong Feng, Hanyu Wang, Chenyang Zhang, Yang Bai. 2116-2124 [doi]
- Enhancing Distributional Stability among Sub-populationsJiashuo Liu, Jiayun Wu, Jie Peng, Xiaoyu Wu, Yang Zheng, Bo Li 0064, Peng Cui 0001. 2125-2133 [doi]
- Safe and Interpretable Estimation of Optimal Treatment RegimesHarsh Parikh, Quinn Lanners, Zade Akras, Sahar Zafar, M. Brandon Westover, Cynthia Rudin, Alexander Volfovsky. 2134-2142 [doi]
- Probabilistic Integral CircuitsGennaro Gala, Cassio P. de Campos, Robert Peharz, Antonio Vergari, Erik Quaeghebeur. 2143-2151 [doi]
- Learning Extensive-Form Perfect Equilibria in Two-Player Zero-Sum Sequential GamesMartino Bernasconi, Alberto Marchesi 0001, Francesco Trovò. 2152-2160 [doi]
- Understanding Progressive Training Through the Framework of Randomized Coordinate DescentRafal Szlendak, Elnur Gasanov, Peter Richtárik. 2161-2169 [doi]
- Multiclass Learning from Noisy Labels for Non-decomposable Performance MeasuresMingyuan Zhang, Shivani Agarwal 0001. 2170-2178 [doi]
- On the Theoretical Expressive Power and the Design Space of Higher-Order Graph TransformersCai Zhou, Rose Yu, Yusu Wang 0001. 2179-2187 [doi]
- Quantifying intrinsic causal contributions via structure preserving interventionsDominik Janzing, Patrick Blöbaum, Atalanti-Anastasia Mastakouri, Philipp Michael Faller, Lenon Minorics, Kailash Budhathoki. 2188-2196 [doi]
- Free-form Flows: Make Any Architecture a Normalizing FlowFelix Draxler, Peter Sorrenson, Lea Zimmermann, Armand Rousselot, Ullrich Köthe. 2197-2205 [doi]
- Efficient Model-Based Concave Utility Reinforcement Learning through Greedy Mirror DescentBianca Marin Moreno, Margaux Brégère, Pierre Gaillard, Nadia Oudjane. 2206-2214 [doi]
- Online learning in bandits with predicted contextYongyi Guo, Ziping Xu, Susan A. Murphy. 2215-2223 [doi]
- Optimising Distributions with Natural Gradient SurrogatesJonathan So, Richard E. Turner. 2224-2232 [doi]
- Monotone Operator Theory-Inspired Message Passing for Learning Long-Range Interaction on GraphsJustin M. Baker, Qingsong Wang, Martin Berzins, Thomas Strohmer, Bao Wang. 2233-2241 [doi]
- Agnostic Multi-Robust Learning using ERMSaba Ahmadi, Avrim Blum, Omar Montasser, Kevin M. Stangl. 2242-2250 [doi]
- GRAWA: Gradient-based Weighted Averaging for Distributed Training of Deep Learning ModelsTolga Dimlioglu, Anna Choromanska. 2251-2259 [doi]
- Failures and Successes of Cross-Validation for Early-Stopped Gradient DescentPratik Patil, Yuchen Wu, Ryan J. Tibshirani. 2260-2268 [doi]
- Imposing Fairness Constraints in Synthetic Data GenerationMahed Abroshan, Andrew Elliott, Mohammad Mahdi Khalili. 2269-2277 [doi]
- Learning a Fourier Transform for Linear Relative Positional Encodings in TransformersKrzysztof Choromanski, Shanda Li, Valerii Likhosherstov, Kumar Avinava Dubey, Shengjie Luo, Di He, Yiming Yang, Tamás Sarlós, Thomas Weingarten, Adrian Weller. 2278-2286 [doi]
- Backward Filtering Forward Deciding in Linear Non-Gaussian State Space ModelsYun-peng Li, Hans-Andrea Loeliger. 2287-2295 [doi]
- MIM-Reasoner: Learning with Theoretical Guarantees for Multiplex Influence MaximizationNguyen Hoang Khoi Do, Tanmoy Chowdhury, Chen Ling, Liang Zhao, My T. Thai. 2296-2304 [doi]
- A Doubly Robust Approach to Sparse Reinforcement LearningWonyoung Kim, Garud Iyengar, Assaf Zeevi. 2305-2313 [doi]
- General Identifiability and Achievability for Causal Representation LearningBurak Varici, Emre Acartürk, Karthikeyan Shanmugam, Ali Tajer. 2314-2322 [doi]
- Sum-max Submodular BanditsStephen U. Pasteris, Alberto Rumi, Fabio Vitale, Nicolò Cesa-Bianchi. 2323-2331 [doi]
- Stochastic Approximation with Biased MCMC for Expectation MaximizationSamuel Gruffaz, Kyurae Kim, Alain Durmus, Jacob Gardner. 2332-2340 [doi]
- EM for Mixture of Linear Regression with Clustered DataAmirhossein Reisizadeh, Khashayar Gatmiry, Asuman E. Ozdaglar. 2341-2349 [doi]
- Analysis of Kernel Mirror Prox for Measure OptimizationPavel E. Dvurechensky, Jia-Jie Zhu. 2350-2358 [doi]
- Implicit Regularization in Deep Tucker Factorization: Low-Rankness via Structured SparsityKais Hariz, Hachem Kadri, Stéphane Ayache, Maher Moakher, Thierry Artières. 2359-2367 [doi]
- Simulating weighted automata over sequences and trees with transformersMichael Rizvi-Martel, Maude Lizaire, Clara Lacroce, Guillaume Rabusseau. 2368-2376 [doi]
- 1 RegularizersArnab Auddy, Haolin Zou, Kamiar Rahnama Rad, Arian Maleki. 2377-2385 [doi]
- Learning Safety Constraints from Demonstrations with Unknown RewardsDavid Lindner, Xin Chen, Sebastian Tschiatschek, Katja Hofmann, Andreas Krause 0001. 2386-2394 [doi]
- Online Learning in Contextual Second-Price Pay-Per-Click AuctionsMengxiao Zhang, Haipeng Luo. 2395-2403 [doi]
- Joint Selection: Adaptively Incorporating Public Information for Private Synthetic DataMiguel Fuentes, Brett C. Mullins, Ryan Mckenna, Gerome Miklau, Daniel Sheldon. 2404-2412 [doi]
- Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient KernelsDa Long, Wei W. Xing, Aditi S. Krishnapriyan, Robert M. Kirby, Shandian Zhe, Michael W. Mahoney. 2413-2421 [doi]
- An Impossibility Theorem for Node EmbeddingT. Mitchell Roddenberry, Yu Zhu 0003, Santiago Segarra. 2422-2430 [doi]
- Mixed variational flows for discrete variablesGian Carlo Diluvi, Benjamin Bloem-Reddy, Trevor Campbell. 2431-2439 [doi]
- Multi-Resolution Active Learning of Fourier Neural OperatorsShibo Li, Xin Yu 0003, Wei W. Xing, Robert M. Kirby, Akil Narayan 0001, Shandian Zhe. 2440-2448 [doi]
- Functional Graphical Models: Structure Enables Offline Data-Driven OptimizationKuba Grudzien Kuba, Masatoshi Uehara, Sergey Levine, Pieter Abbeel. 2449-2457 [doi]
- Federated Experiment Design under Distributed Differential PrivacyWei-Ning Chen, Graham Cormode, Akash Bharadwaj, Peter Romov, Ayfer Özgür. 2458-2466 [doi]
- Optimal Zero-Shot Detector for Multi-Armed AttacksFederica Granese, Marco Romanelli 0002, Pablo Piantanida. 2467-2475 [doi]
- Towards Costless Model Selection in Contextual Bandits: A Bias-Variance PerspectiveSanath Kumar Krishnamurthy, Adrienne M. Propp, Susan Athey. 2476-2484 [doi]
- Conformal Contextual Robust OptimizationYash P. Patel, Sahana Rayan, Ambuj Tewari. 2485-2493 [doi]
- Learning Adaptive Kernels for Statistical Independence TestsYixin Ren, Yewei Xia, Hao Zhang 0079, Jihong Guan, Shuigeng Zhou. 2494-2502 [doi]
- Lexicographic Optimization: Algorithms and StabilityJacob D. Abernethy, Robert E. Schapire, Umar Syed. 2503-2511 [doi]
- Can Probabilistic Feedback Drive User Impacts in Online Platforms?Jessica Dai, Bailey Flanigan, Meena Jagadeesan, Nika Haghtalab, Chara Podimata. 2512-2520 [doi]
- Learning Cartesian Product Graphs with Laplacian ConstraintsChanghao Shi, Gal Mishne. 2521-2529 [doi]
- Minimizing Convex Functionals over Space of Probability Measures via KL Divergence Gradient FlowRentian Yao, Linjun Huang, Yun Yang. 2530-2538 [doi]
- Bayesian Online Learning for Consensus PredictionSamuel Showalter, Alex J. Boyd, Padhraic Smyth, Mark Steyvers. 2539-2547 [doi]
- Bandit Pareto Set Identification: the Fixed Budget SettingCyrille Kone, Emilie Kaufmann, Laura Richert. 2548-2556 [doi]
- Efficient Data Shapley for Weighted Nearest Neighbor AlgorithmsJiachen T. Wang, Prateek Mittal, Ruoxi Jia 0001. 2557-2565 [doi]
- Surrogate Bayesian Networks for Approximating Evolutionary GamesVincent Hsiao, Dana S. Nau, Bobak Pezeshki, Rina Dechter. 2566-2574 [doi]
- BlockBoost: Scalable and Efficient Blocking through BoostingThiago Ramos, Rodrigo Loro Schuller, Alex Akira Okuno, Lucas Nissenbaum, Roberto I Oliveira, Paulo Orenstein. 2575-2583 [doi]
- Continual Domain Adversarial Adaptation via Double-Head DiscriminatorsYan Shen, Zhanghexuan Ji, Chunwei Ma, Mingchen Gao. 2584-2592 [doi]
- Maximum entropy GFlowNets with soft Q-learningSobhan Mohammadpour, Emmanuel Bengio, Emma Frejinger, Pierre-Luc Bacon. 2593-2601 [doi]
- Near-Optimal Pure Exploration in Matrix Games: A Generalization of Stochastic Bandits & Dueling BanditsArnab Maiti, Ross Boczar, Kevin G. Jamieson, Lillian J. Ratliff. 2602-2610 [doi]
- Accelerating Approximate Thompson Sampling with Underdamped Langevin Monte CarloHaoyang Zheng, Wei Deng 0002, Christian Moya, Guang Lin. 2611-2619 [doi]
- Large-Scale Gaussian Processes via Alternating ProjectionKaiwen Wu, Jonathan Wenger, Haydn T. Jones, Geoff Pleiss, Jacob Gardner. 2620-2628 [doi]
- Achieving Group Distributional Robustness and Minimax Group Fairness with Interpolating ClassifiersNatalia Martínez, Martín Bertrán, Guillermo Sapiro. 2629-2637 [doi]
- Graph fission and cross-validationJames Leiner, Aaditya Ramdas. 2638-2646 [doi]
- Graph Pruning for Enumeration of Minimal Unsatisfiable SubsetsPanagiotis Lymperopoulos, Liping Liu 0001. 2647-2655 [doi]
- Nonparametric Automatic Differentiation Variational Inference with Spline ApproximationYuda Shao, Shan Yu, Tianshu Feng. 2656-2664 [doi]
- Strategic Usage in a Multi-Learner SettingEliot Shekhtman, Sarah Dean. 2665-2673 [doi]
- On Parameter Estimation in Deviated Gaussian Mixture of ExpertsHuy Nguyen, Khai Nguyen, Nhat Ho. 2674-2682 [doi]
- Towards Convergence Rates for Parameter Estimation in Gaussian-gated Mixture of ExpertsHuy Nguyen, TrungTin Nguyen, Khai Nguyen, Nhat Ho. 2683-2691 [doi]
- PrIsing: Privacy-Preserving Peer Effect Estimation via Ising ModelAbhinav Chakraborty, Anirban Chatterjee, Abhinandan Dalal. 2692-2700 [doi]
- Escaping Saddle Points in Heterogeneous Federated Learning via Distributed SGD with Communication CompressionSijin Chen, Zhize Li, Yuejie Chi. 2701-2709 [doi]
- From Coupled Oscillators to Graph Neural Networks: Reducing Over-smoothing via a Kuramoto Model-based ApproachTuan Nguyen, Hirotada Honda, Takashi Sano, Vinh Nguyen, Shugo Nakamura, Tan Minh Nguyen. 2710-2718 [doi]
- Distributionally Robust Off-Dynamics Reinforcement Learning: Provable Efficiency with Linear Function ApproximationZhishuai Liu, Pan Xu. 2719-2727 [doi]
- Invariant Aggregator for Defending against Federated Backdoor AttacksXiaoyang Wang, Dimitrios Dimitriadis, Sanmi Koyejo, Shruti Tople. 2728-2736 [doi]
- Policy Evaluation for Reinforcement Learning from Human Feedback: A Sample Complexity AnalysisZihao Li, Xiang Ji, Minshuo Chen, Mengdi Wang. 2737-2745 [doi]
- Stochastic Approximation with Delayed Updates: Finite-Time Rates under Markovian SamplingArman Adibi, Nicolò Dal Fabbro, Luca Schenato 0001, Sanjeev R. Kulkarni, H. Vincent Poor, George J. Pappas, Hamed Hassani, Aritra Mitra. 2746-2754 [doi]
- Privacy-Preserving Decentralized Actor-Critic for Cooperative Multi-Agent Reinforcement LearningMaheed H. Ahmed, Mahsa Ghasemi. 2755-2763 [doi]
- On the Model-Misspecification in Reinforcement LearningYunfan Li, Lin Yang. 2764-2772 [doi]
- Any-dimensional equivariant neural networksEitan Levin, Mateo Díaz. 2773-2781 [doi]
- Conditional Adjustment in a Markov Equivalence ClassSara LaPlante, Emilija Perkovic. 2782-2790 [doi]
- Learning to Solve the Constrained Most Probable Explanation Task in Probabilistic Graphical ModelsShivvrat Arya, Tahrima Rahman, Vibhav Gogate. 2791-2799 [doi]
- Adaptive and non-adaptive minimax rates for weighted Laplacian-Eigenmap based nonparametric regressionZhaoyang Shi, Krishna Balasubramanian, Wolfgang Polonik. 2800-2808 [doi]
- Privacy-Constrained Policies via Mutual Information Regularized Policy GradientsChris Cundy, Rishi Desai, Stefano Ermon. 2809-2817 [doi]
- Deep Dependency Networks and Advanced Inference Schemes for Multi-Label ClassificationShivvrat Arya, Yu Xiang, Vibhav Gogate. 2818-2826 [doi]
- Near-optimal Per-Action Regret Bounds for Sleeping BanditsQuan M. Nguyen, Nishant Mehta. 2827-2835 [doi]
- Electronic Medical Records Assisted Digital Clinical Trial DesignXinrui Ruan, Jingshen Wang, Yingfei Wang, Waverly Wei. 2836-2844 [doi]
- Multivariate Time Series Forecasting By Graph Attention Networks With Theoretical GuaranteesZhi Zhang, Weijian Li, Han Liu. 2845-2853 [doi]
- Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient MethodsDavoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen 0001, Laura Balzano. 2854-2862 [doi]
- End-to-end Feature Selection Approach for Learning Skinny TreesShibal Ibrahim, Kayhan Behdin, Rahul Mazumder. 2863-2871 [doi]
- Contextual Directed Acyclic GraphsRyan Thompson, Edwin V. Bonilla, Robert Kohn. 2872-2880 [doi]
- Conformalized Semi-supervised Random Forest for Classification and Abnormality DetectionYujin Han, Mingwenchan Xu, Leying Guan. 2881-2889 [doi]
- Multi-Level Symbolic Regression: Function Structure Learning for Multi-Level DataKei Sen Fong, Mehul Motani. 2890-2898 [doi]
- Non-Convex Joint Community Detection and Group Synchronization via Generalized Power MethodSijin Chen, Xiwei Cheng, Anthony Man-Cho So. 2899-2907 [doi]
- Fast Minimization of Expected Logarithmic Loss via Stochastic Dual AveragingChung-En Tsai, Hao-Chung Cheng, Yen-Huan Li. 2908-2916 [doi]
- Discriminant Distance-Aware Representation on Deterministic Uncertainty Quantification MethodsJiaxin Zhang, Kamalika Das, Kumar Sricharan. 2917-2925 [doi]
- Estimating treatment effects from single-arm trials via latent-variable modelingManuel Haussmann, Tran Minh Son Le, Viivi Halla-aho, Samu Kurki, Jussi Leinonen, Miika Koskinen, Samuel Kaski, Harri Lähdesmäki. 2926-2934 [doi]
- Unveiling Latent Causal Rules: A Temporal Point Process Approach for Abnormal Event ExplanationYiling Kuang, Chao Yang, Yang Yang, Shuang Li. 2935-2943 [doi]
- Online Learning of Decision Trees with Thompson SamplingAyman Chaouki, Jesse Read, Albert Bifet. 2944-2952 [doi]
- Identifying Spurious Biases Early in Training through the Lens of Simplicity BiasYu Yang 0007, Eric Gan, Gintare Karolina Dziugaite, Baharan Mirzasoleiman. 2953-2961 [doi]
- SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic BanditsSubhojyoti Mukherjee, Qiaomin Xie, Josiah P. Hanna, Robert D. Nowak. 2962-2970 [doi]
- Spectrum Extraction and Clipping for Implicitly Linear LayersAli Ebrahimpour Boroojeny, Matus Telgarsky, Hari Sundaram. 2971-2979 [doi]
- Pessimistic Off-Policy Multi-Objective OptimizationShima Alizadeh, Aniruddha Bhargava, Karthick Gopalswamy, Lalit Jain, Branislav Kveton, Ge Liu. 2980-2988 [doi]
- Faithful graphical representations of local independenceSøren Wengel Mogensen. 2989-2997 [doi]
- Density-Regression: Efficient and Distance-aware Deep Regressor for Uncertainty Estimation under Distribution ShiftsHa Manh Bui, Anqi Liu. 2998-3006 [doi]
- Leveraging PAC-Bayes Theory and Gibbs Distributions for Generalization Bounds with Complexity MeasuresPaul Viallard, Rémi Emonet, Amaury Habrard, Emilie Morvant, Valentina Zantedeschi. 3007-3015 [doi]
- On the connection between Noise-Contrastive Estimation and Contrastive DivergenceAmanda Olmin, Jakob Lindqvist, Lennart Svensson, Fredrik Lindsten. 3016-3024 [doi]
- Reward-Relevance-Filtered Linear Offline Reinforcement LearningAngela Zhou. 3025-3033 [doi]
- Preventing Arbitrarily High Confidence on Far-Away Data in Point-Estimated Discriminative Neural NetworksAhmad Rashid, Serena Hacker, Guojun Zhang, Agustinus Kristiadi, Pascal Poupart. 3034-3042 [doi]
- Stochastic Multi-Armed Bandits with Strongly Reward-Dependent DelaysYifu Tang, Yingfei Wang, Zeyu Zheng. 3043-3051 [doi]
- A Greedy Approximation for k-Determinantal Point ProcessesJulia Grosse, Rahel Fischer, Roman Garnett, Philipp Hennig. 3052-3060 [doi]
- Improved Algorithm for Adversarial Linear Mixture MDPs with Bandit Feedback and Unknown TransitionLong-Fei Li, Peng Zhao, Zhi-Hua Zhou. 3061-3069 [doi]
- Learning the Pareto Set Under Incomplete Preferences: Pure Exploration in Vector BanditsEfe Mert Karagözlü, Yasar Cahit Yildirim, Çagin Ararat, Cem Tekin. 3070-3078 [doi]
- The Relative Gaussian Mechanism and its Application to Private Gradient DescentHadrien Hendrikx, Paul Mangold, Aurélien Bellet. 3079-3087 [doi]
- Euclidean, Projective, Conformal: Choosing a Geometric Algebra for Equivariant TransformersPim de Haan, Taco Cohen, Johann Brehmer. 3088-3096 [doi]
- Improved Sample Complexity Analysis of Natural Policy Gradient Algorithm with General Parameterization for Infinite Horizon Discounted Reward Markov Decision ProcessesWashim Uddin Mondal, Vaneet Aggarwal. 3097-3105 [doi]
- Learning Fair Division from Bandit FeedbackHakuei Yamada, Junpei Komiyama, Kenshi Abe, Atsushi Iwasaki. 3106-3114 [doi]
- Optimal Transport for Measures with Noisy Tree MetricTam Le, Truyen Nguyen, Kenji Fukumizu. 3115-3123 [doi]
- Causally Inspired Regularization Enables Domain General RepresentationsOlawale Salaudeen, Sanmi Koyejo. 3124-3132 [doi]
- Probabilistic Calibration by Design for Neural Network RegressionVictor Dheur, Souhaib Ben Taieb. 3133-3141 [doi]
- Multi-Agent Learning in Contextual Games under Unknown ConstraintsAnna M. Maddux, Maryam Kamgarpour. 3142-3150 [doi]
- A Scalable Algorithm for Individually Fair k-Means ClusteringMohammadHossein Bateni, Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi. 3151-3159 [doi]
- Approximate Control for Continuous-Time POMDPsYannick Eich, Bastian Alt, Heinz Koeppl. 3160-3168 [doi]
- Offline Primal-Dual Reinforcement Learning for Linear MDPsGermano Gabbianelli, Gergely Neu, Matteo Papini, Nneka Okolo. 3169-3177 [doi]
- Fixed-kinetic Neural Hamiltonian Flows for enhanced interpretability and reduced complexityVincent Souveton, Arnaud Guillin, Jens Jasche, Guilhem Lavaux, Manon Michel. 3178-3186 [doi]
- Learning Unknown Intervention Targets in Structural Causal Models from Heterogeneous DataYuqin Yang, Saber Salehkaleybar, Negar Kiyavash. 3187-3195 [doi]
- XB-MAML: Learning Expandable Basis Parameters for Effective Meta-Learning with Wide Task CoverageJae Jun Lee, Sung Whan Yoon. 3196-3204 [doi]
- General Tail Bounds for Non-Smooth Stochastic Mirror DescentKhaled Eldowa, Andrea Paudice. 3205-3213 [doi]
- Symmetric Equilibrium Learning of VAEsBoris Flach, Dmitrij Schlesinger, Alexander Shekhovtsov. 3214-3222 [doi]
- On Feynman-Kac training of partial Bayesian neural networksZheng Zhao 0004, Sebastian Mair 0001, Thomas B. Schön, Jens Sjölund. 3223-3231 [doi]
- No-Regret Algorithms for Safe Bayesian Optimization with Monotonicity ConstraintsArpan Losalka, Jonathan Scarlett. 3232-3240 [doi]
- Learning multivariate temporal point processes via the time-change theoremGuilherme Augusto Zagatti, See-Kiong Ng, Stéphane Bressan. 3241-3249 [doi]
- Model-based Policy Optimization under Approximate Bayesian InferenceChaoqi Wang, Yuxin Chen 0001, Kevin Murphy. 3250-3258 [doi]
- SDMTR: A Brain-inspired Transformer for Relation InferenceXiangyu Zeng, Jie Lin, Piao Hu, Zhihao Li, Tianxi Huang. 3259-3267 [doi]
- Directed Hypergraph Representation Learning for Link PredictionZitong Ma, Wenbo Zhao, Zhe Yang. 3268-3276 [doi]
- Formal Verification of Unknown Stochastic Systems via Non-parametric EstimationZhi Zhang, Chenyu Ma, Saleh Soudijani, Sadegh Soudjani. 3277-3285 [doi]
- Variational ResamplingOskar Kviman, Nicola Branchini, Víctor Elvira, Jens Lagergren. 3286-3294 [doi]
- Implicit Bias in Noisy-SGD: With Applications to Differentially Private TrainingTom Sander, Maxime Sylvestre, Alain Durmus. 3295-3303 [doi]
- Training a Tucker Model With Shared Factors: a Riemannian Optimization ApproachIvan Peshekhonov, Aleksey Arzhantsev, Maxim V. Rakhuba. 3304-3312 [doi]
- Don't Be Pessimistic Too Early: Look K Steps Ahead!Chaoqi Wang, Ziyu Ye, Kevin Murphy, Yuxin Chen 0001. 3313-3321 [doi]
- How does GPT-2 Predict Acronyms? Extracting and Understanding a Circuit via Mechanistic InterpretabilityJorge García-Carrasco, Alejandro Maté, Juan C. Trujillo. 3322-3330 [doi]
- Identifiable Feature Learning for Spatial Data with Nonlinear ICAHermanni Hälvä, Jonathan So, Richard E. Turner, Aapo Hyvärinen. 3331-3339 [doi]
- Interpretable Causal Inference for Analyzing Wearable, Sensor, and Distributional DataSrikar Katta, Harsh Parikh, Cynthia Rudin, Alexander Volfovsky. 3340-3348 [doi]
- Score Operator Newton transportNisha Chandramoorthy, Florian T. Schaefer, Youssef M. Marzouk. 3349-3357 [doi]
- ALAS: Active Learning for Autoconversion Rates Prediction from Satellite DataMaria C. Novitasari, Johannes Quaas, Miguel Rodrigues. 3358-3366 [doi]
- Optimal Budgeted Rejection Sampling for Generative ModelsAlexandre Verine, Muni Sreenivas Pydi, Benjamin Négrevergne, Yann Chevaleyre. 3367-3375 [doi]
- Posterior Uncertainty Quantification in Neural Networks using Data AugmentationLuhuan Wu, Sinead A. Williamson. 3376-3384 [doi]
- DHMConv: Directed Hypergraph Momentum Convolution FrameworkWenbo Zhao, Zitong Ma, Zhe Yang. 3385-3393 [doi]
- From Data Imputation to Data Cleaning - Automated Cleaning of Tabular Data Improves Downstream Predictive PerformanceSebastian Jäger, Felix Biessmann. 3394-3402 [doi]
- Discriminator Guidance for Autoregressive Diffusion ModelsFilip Ekström Kelvinius, Fredrik Lindsten. 3403-3411 [doi]
- Resilient Constrained Reinforcement LearningDongsheng Ding, Zhengyan Huan, Alejandro Ribeiro. 3412-3420 [doi]
- On-Demand Federated Learning for Arbitrary Target Class DistributionsIsu Jeong, Seulki Lee. 3421-3429 [doi]
- DiffRed: Dimensionality reduction guided by stable rankPrarabdh Shukla, Gagan Raj Gupta, Kunal Dutta. 3430-3438 [doi]
- Data-Driven Confidence Intervals with Optimal Rates for the Mean of Heavy-Tailed DistributionsAmbrus Tamás, Szabolcs Szentpéteri, Balázs Csanád Csáji. 3439-3447 [doi]
- Communication-Efficient Federated Learning With Data and Client HeterogeneityHossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh. 3448-3456 [doi]
- SIFU: Sequential Informed Federated Unlearning for Efficient and Provable Client Unlearning in Federated OptimizationYann Fraboni, Martin Van Waerebeke, Kevin Scaman, Richard Vidal, Laetitia Kameni, Marco Lorenzi. 3457-3465 [doi]
- Consistent and Asymptotically Unbiased Estimation of Proper Calibration ErrorsTeodora Popordanoska, Sebastian Gregor Gruber, Aleksei Tiulpin, Florian Büttner, Matthew B. Blaschko. 3466-3474 [doi]
- Learning to Defer to a Population: A Meta-Learning ApproachDharmesh Tailor, Aditya Patra, Rajeev Verma, Putra Manggala, Eric T. Nalisnick. 3475-3483 [doi]
- Trigonometric Quadrature Fourier Features for Scalable Gaussian Process RegressionKevin Li, Max Balakirsky, Simon Mak. 3484-3492 [doi]
- Taming Nonconvex Stochastic Mirror Descent with General Bregman DivergenceIlyas Fatkhullin, Niao He. 3493-3501 [doi]
- Cylindrical Thompson Sampling for High-Dimensional Bayesian OptimizationBahador Rashidi, Kerrick Johnstonbaugh, Chao Gao. 3502-3510 [doi]
- On learning history-based policies for controlling Markov decision processesGandharv Patil, Aditya Mahajan, Doina Precup. 3511-3519 [doi]
- SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through StratificationPatrick Kolpaczki, Maximilian Muschalik, Fabian Fumagalli, Barbara Hammer, Eyke Hüllermeier. 3520-3528 [doi]
- Dynamic Inter-treatment Information Sharing for Individualized Treatment Effects EstimationVinod Kumar Chauhan, Jiandong Zhou, Ghadeer O. Ghosheh, Soheila Molaei, David A. Clifton. 3529-3537 [doi]
- Benefits of Non-Linear Scale Parameterizations in Black Box Variational Inference through Smoothness Results and Gradient Variance BoundsAlexandra Maria Hotti, Lennart Alexander Van der Goten, Jens Lagergren. 3538-3546 [doi]
- Length independent PAC-Bayes bounds for Simple RNNsVolodimir Mitarchuk, Clara Lacroce, Rémi Eyraud, Rémi Emonet, Amaury Habrard, Guillaume Rabusseau. 3547-3555 [doi]
- Leveraging Continuous Time to Understand Momentum When Training Diagonal Linear NetworksHristo Papazov, Scott Pesme, Nicolas Flammarion. 3556-3564 [doi]
- Why is parameter averaging beneficial in SGD? An objective smoothing perspectiveAtsushi Nitanda, Ryuhei Kikuchi, Shugo Maeda, Denny Wu. 3565-3573 [doi]
- Identification and Estimation of "Causes of Effects" using Covariate-Mediator InformationRyusei Shingaki, Manabu Kuroki. 3574-3582 [doi]
- Sequential learning of the Pareto front for multi-objective banditsÉlise Crepon, Aurélien Garivier, Wouter M. Koolen. 3583-3591 [doi]
- Equivalence Testing: The Power of Bounded AdaptivityDiptarka Chakraborty, Sourav Chakraborty 0001, Gunjan Kumar, Kuldeep S. Meel. 3592-3600 [doi]
- Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form EquationsKrzysztof Kacprzyk, Mihaela van der Schaar. 3601-3609 [doi]
- On the estimation of persistence intensity functions and linear representations of persistence diagramsWeichen Wu, Jisu Kim, Alessandro Rinaldo. 3610-3618 [doi]
- Optimal estimation of Gaussian (poly)treesYuhao Wang, Ming Gao, Wai Ming Tai, Bryon Aragam, Arnab Bhattacharyya 0001. 3619-3627 [doi]
- Approximate Bayesian Class-Conditional Models under Continuous Representation ShiftThomas L. Lee, Amos J. Storkey. 3628-3636 [doi]
- Dissimilarity BanditsPaolo Battellani, Alberto Maria Metelli, Francesco Trovò. 3637-3645 [doi]
- Consistent Optimal Transport with Empirical Conditional MeasuresPiyushi Manupriya, Rachit Keerti Das, Sayantan Biswas, Sakethanath Nath Jagarlapudi. 3646-3654 [doi]
- On the Impact of Overparameterization on the Training of a Shallow Neural Network in High DimensionsSimon Martin 0006, Francis Bach, Giulio Biroli. 3655-3663 [doi]
- Mixed Models with Multiple Instance LearningJan P. Engelmann, Alessandro Palma, Jakub M. Tomczak, Fabian J. Theis, Francesco Paolo Casale. 3664-3672 [doi]
- Horizon-Free and Instance-Dependent Regret Bounds for Reinforcement Learning with General Function ApproximationJiayi Huang, Han Zhong 0001, Liwei Wang, Lin Yang 0011. 3673-3681 [doi]
- Stochastic Extragradient with Random Reshuffling: Improved Convergence for Variational InequalitiesKonstantinos Emmanouilidis, René Vidal, Nicolas Loizou. 3682-3690 [doi]
- Inconsistency of Cross-Validation for Structure Learning in Gaussian Graphical ModelsZhao Lyu, Wai Ming Tai, Mladen Kolar, Bryon Aragam. 3691-3699 [doi]
- Differentially Private Conditional Independence TestingIden Kalemaj, Shiva Prasad Kasiviswanathan, Aaditya Ramdas. 3700-3708 [doi]
- Minimax Excess Risk of First-Order Methods for Statistical Learning with Data-Dependent OraclesKevin Scaman, Mathieu Even, Batiste Le Bars, Laurent Massoulié. 3709-3717 [doi]
- On the Nyström Approximation for Preconditioning in Kernel MachinesAmirhesam Abedsoltan, Parthe Pandit, Luis Rademacher, Mikhail Belkin. 3718-3726 [doi]
- Learning to Rank for Optimal Treatment Allocation Under Resource ConstraintsFahad Kamran, Maggie Makar, Jenna Wiens. 3727-3735 [doi]
- Fair Machine Unlearning: Data Removal while Mitigating DisparitiesAlex Oesterling, Jiaqi Ma, Flávio P. Calmon, Himabindu Lakkaraju. 3736-3744 [doi]
- On the Effect of Key Factors in Spurious Correlation: A theoretical PerspectiveYipei Wang, Xiaoqian Wang 0001. 3745-3753 [doi]
- Hodge-Compositional Edge Gaussian ProcessesMaosheng Yang, Viacheslav Borovitskiy, Elvin Isufi. 3754-3762 [doi]
- Manifold-Aligned Counterfactual Explanations for Neural NetworksAsterios Tsiourvas, Wei Sun 0031, Georgia Perakis. 3763-3771 [doi]
- Fast and Accurate Estimation of Low-Rank Matrices from Noisy Measurements via Preconditioned Non-Convex Gradient DescentJialun Zhang, Richard Y. Zhang, Hong Ming Chiu. 3772-3780 [doi]
- LP-based Construction of DC Decompositions for Efficient Inference of Markov Random FieldsChaitanya Murti, Dhruva Kashyap, Chiranjib Bhattacharyya. 3781-3789 [doi]
- On the Misspecification of Linear Assumptions in Synthetic ControlsAchille O. R. Nazaret, Claudia Shi, David M. Blei. 3790-3798 [doi]
- The sample complexity of ERMs in stochastic convex optimizationDaniel Carmon, Amir Yehudayoff, Roi Livni. 3799-3807 [doi]
- Cousins Of The Vendi Score: A Family Of Similarity-Based Diversity Metrics For Science And Machine LearningAmey P. Pasarkar, Adji Bousso Dieng. 3808-3816 [doi]
- On cyclical MCMC samplingLiwei Wang, Xinru Liu, Aaron Smith, Aguemon Y. Atchadé. 3817-3825 [doi]
- FairRR: Pre-Processing for Group Fairness through Randomized ResponseJoshua John Ward, Xianli Zeng, Guang Cheng. 3826-3834 [doi]
- Fitting ARMA Time Series Models without Identification: A Proximal ApproachYin Liu, Sam Davanloo Tajbakhsh. 3835-3843 [doi]
- Unsupervised Change Point Detection in Multivariate Time SeriesDaoping Wu, Suhas Gundimeda, Shaoshuai Mou, Christopher J. Quinn. 3844-3852 [doi]
- Proving Linear Mode Connectivity of Neural Networks via Optimal TransportDamien Ferbach, Baptiste Goujaud, Gauthier Gidel, Aymeric Dieuleveut. 3853-3861 [doi]
- Multi-objective Optimization via Wasserstein-Fisher-Rao Gradient FlowYinuo Ren, Tesi Xiao, Tanmay Gangwani, Anshuka Rangi, Holakou Rahmanian, Lexing Ying, Subhajit Sanyal. 3862-3870 [doi]
- Adaptive importance sampling for heavy-tailed distributions via α-divergence minimizationThomas Guilmeau, Nicola Branchini, Émilie Chouzenoux, Victor Elvira. 3871-3879 [doi]
- A Bayesian Learning Algorithm for Unknown Zero-sum Stochastic Games with an Arbitrary OpponentMehdi Jafarnia-Jahromi, Rahul A. Jain, Ashutosh Nayyar. 3880-3888 [doi]
- Near-Optimal Policy Optimization for Correlated Equilibrium in General-Sum Markov GamesYang Cai 0001, Haipeng Luo, Chen-Yu Wei, Weiqiang Zheng. 3889-3897 [doi]
- Multi-Agent Bandit Learning through Heterogeneous Action Erasure ChannelsOsama A. Hanna, Merve Karakas, Lin Yang 0011, Christina Fragouli. 3898-3906 [doi]
- Efficient Variational Sequential Information ControlJianwei Shen, Jason Pacheco. 3907-3915 [doi]
- Conditions on Preference Relations that Guarantee the Existence of Optimal PoliciesJonathan Colaço Carr, Prakash Panangaden, Doina Precup. 3916-3924 [doi]
- Membership Testing in Markov Equivalence Classes via Independence QueriesJiaqi Zhang, Kirankumar Shiragur, Caroline Uhler. 3925-3933 [doi]
- Functional Flow MatchingGavin Kerrigan, Giosue Migliorini, Padhraic Smyth. 3934-3942 [doi]
- Learning Under Random Distributional ShiftsKirk C. Bansak, Elisabeth Paulson, Dominik Rothenhäusler. 3943-3951 [doi]
- Supervised Feature Selection via Ensemble Gradient Information from Sparse Neural NetworksKaiting Liu, Zahra Atashgahi, Ghada Sokar, Mykola Pechenizkiy, Decebal Constantin Mocanu. 3952-3960 [doi]
- Proxy Methods for Domain AdaptationKatherine Tsai, Stephen R. Pfohl, Olawale Salaudeen, Nicole Chiou, Matt J. Kusner, Alexander D'Amour, Sanmi Koyejo, Arthur Gretton. 3961-3969 [doi]
- Contextual Bandits with Budgeted Information RevealKyra Gan, Esmaeil Keyvanshokooh, Xueqing Liu, Susan A. Murphy. 3970-3978 [doi]
- Timing as an Action: Learning When to Observe and ActHelen Zhou, Audrey Huang, Kamyar Azizzadenesheli, David Childers, Zachary C. Lipton. 3979-3987 [doi]
- Stochastic Smoothed Gradient Descent Ascent for Federated Minimax OptimizationWei Shen, Minhui Huang, Jiawei Zhang, Cong Shen. 3988-3996 [doi]
- Online multiple testing with e-valuesZiyu Xu, Aaditya Ramdas. 3997-4005 [doi]
- Informative Path Planning with Limited AdaptivityRayen Tan, Rohan Ghuge, Viswanath Nagarajan. 4006-4014 [doi]
- How Good is a Single Basin?Kai Lion, Lorenzo Noci, Thomas Hofmann, Gregor Bachmann. 4015-4023 [doi]
- Independent Learning in Constrained Markov Potential GamesPhilip Jordan, Anas Barakat, Niao He. 4024-4032 [doi]
- NoisyMix: Boosting Model Robustness to Common CorruptionsN. Benjamin Erichson, Soon Hoe Lim, Winnie Xu, Francisco Utrera, Ziang Cao, Michael W. Mahoney. 4033-4041 [doi]
- Holographic Global Convolutional Networks for Long-Range Prediction Tasks in Malware DetectionMohammad Mahmudul Alam, Edward Raff, Stella Biderman, Tim Oates 0001, James Holt. 4042-4050 [doi]
- On the (In)feasibility of ML Backdoor Detection as an Hypothesis Testing ProblemGeorg Pichler, Marco Romanelli 0002, Divya Prakash Manivannan, Prashanth Krishnamurthy, Farshad Khorrami, Siddharth Garg. 4051-4059 [doi]
- Acceleration and Implicit Regularization in Gaussian Phase RetrievalTyler Maunu, Martin Molina-Fructuoso. 4060-4068 [doi]
- Low-rank MDPs with Continuous Action SpacesMiruna Oprescu, Andrew Bennett, Nathan Kallus. 4069-4077 [doi]
- Deep Learning-Based Alternative Route ComputationAlex Zhai, Dee Guo, Sreenivas Gollapudi, Kostas Kollias, Daniel Delling. 4078-4086 [doi]
- An Analytic Solution to Covariance Propagation in Neural NetworksOren Wright, Yorie Nakahira, José M. F. Moura. 4087-4095 [doi]
- On the Vulnerability of Fairness Constrained Learning to Malicious NoiseAvrim Blum, Princewill Okoroafor, Aadirupa Saha, Kevin M. Stangl. 4096-4104 [doi]
- Uncertainty-aware Continuous Implicit Neural Representations for Remote Sensing Object CountingSiyuan Xu, Yucheng Wang, Mingzhou Fan, Byung-Jun Yoon, Xiaoning Qian. 4105-4113 [doi]
- Think Global, Adapt Local: Learning Locally Adaptive K-Nearest Neighbor Kernel Density EstimatorsKenny Olsen, Rasmus M. Hoeegh Lindrup, Morten Mørup. 4114-4122 [doi]
- Stochastic Methods in Variational Inequalities: Ergodicity, Bias and RefinementsEmmanouil-Vasileios Vlatakis-Gkaragkounis, Angeliki Giannou, Yudong Chen 0001, Qiaomin Xie. 4123-4131 [doi]
- Self-Compatibility: Evaluating Causal Discovery without Ground TruthPhilipp Michael Faller, Leena C. Vankadara, Atalanti-Anastasia Mastakouri, Francesco Locatello, Dominik Janzing. 4132-4140 [doi]
- Equivariant bootstrapping for uncertainty quantification in imaging inverse problemsMarcelo Pereyra, Julián Tachella. 4141-4149 [doi]
- Private Learning with Public FeaturesWalid Krichene, Nicolas Mayoraz, Steffen Rendle, Shuang Song 0001, Abhradeep Thakurta, Li Zhang. 4150-4158 [doi]
- An Improved Algorithm for Learning Drifting Discrete DistributionsAlessio Mazzetto. 4159-4167 [doi]
- Towards a Complete Benchmark on Video Moment LocalizationJinyeong Chae, DongHwa Kim, Kwanseok Kim, Doyeon Lee, Sangho Lee, Seongsu Ha, Jonghwan Mun, Wooyoung Kang, Byungseok Roh, Joonseok Lee. 4168-4176 [doi]
- Efficient Reinforcement Learning for Routing Jobs in Heterogeneous Queueing SystemsNeharika Jali, Guannan Qu, Weina Wang 0001, Gauri Joshi. 4177-4185 [doi]
- Sinkhorn Flow as Mirror Flow: A Continuous-Time Framework for Generalizing the Sinkhorn AlgorithmMohammad Reza Karimi, Ya-Ping Hsieh, Andreas Krause 0001. 4186-4194 [doi]
- SADI: Similarity-Aware Diffusion Model-Based Imputation for Incomplete Temporal EHR DataZongyu Dai, Emily J. Getzen, Qi Long. 4195-4203 [doi]
- Weight-Sharing RegularizationMehran Shakerinava, Motahareh Sohrabi, Siamak Ravanbakhsh, Simon Lacoste-Julien. 4204-4212 [doi]
- Generative Flow Networks as Entropy-Regularized RLDaniil Tiapkin, Nikita Morozov, Alexey Naumov, Dmitry P. Vetrov. 4213-4221 [doi]
- Multi-resolution Time-Series Transformer for Long-term ForecastingYitian Zhang, Liheng Ma, Soumyasundar Pal, Yingxue Zhang 0001, Mark Coates. 4222-4230 [doi]
- First Passage Percolation with Queried HintsKritkorn Karntikoon, Yiheng Shen, Sreenivas Gollapudi, Kostas Kollias, Aaron Schild, Ali Kemal Sinop. 4231-4239 [doi]
- User-level Differentially Private Stochastic Convex Optimization: Efficient Algorithms with Optimal RatesDaogao Liu, Hilal Asi. 4240-4248 [doi]
- The Effective Number of Shared Dimensions Between Paired DatasetsHamza Giaffar, Camille E. Rullán Buxó, Mikio Aoi. 4249-4257 [doi]
- DE-HNN: An effective neural model for Circuit Netlist representationZhishang Luo, Truong-Son Hy, Puoya Tabaghi, Michaël Defferrard, Elahe Rezaei, Ryan Carey, W. Rhett Davis, Rajeev Jain, Yusu Wang 0001. 4258-4266 [doi]
- Simulation-Based StackingYuling Yao, Bruno Régaldo-Saint Blancard, Justin Domke. 4267-4275 [doi]
- Towards Practical Non-Adversarial Distribution MatchingZiyu Gong, Ben Usman, Han Zhao 0002, David I. Inouye. 4276-4284 [doi]
- Benchmarking Observational Studies with Experimental Data under Right-CensoringIlker Demirel, Edward De Brouwer, Zeshan M. Hussain, Michael Oberst, Anthony Philippakis, David A. Sontag. 4285-4293 [doi]
- Asynchronous Randomized Trace EstimationVasileios Kalantzis, Shashanka Ubaru, Chai Wah Wu, Georgios Kollias, Lior Horesh. 4294-4302 [doi]
- Computing epidemic metrics with edge differential privacyGeorge Z. Li, Dung Nguyen 0002, Anil Vullikanti. 4303-4311 [doi]
- Sequential Monte Carlo for Inclusive KL Minimization in Amortized Variational InferenceDeclan McNamara, Jackson Loper, Jeffrey Regier. 4312-4320 [doi]
- Anytime-Constrained Reinforcement LearningJeremy McMahan, Xiaojin Zhu 0001. 4321-4329 [doi]
- Tensor-view Topological Graph Neural NetworkTao Wen, Elynn Chen, Yuzhou Chen. 4330-4338 [doi]
- Auditing Fairness under Unobserved ConfoundingYewon Byun, Dylan Sam, Michael Oberst, Zachary C. Lipton, Bryan Wilder. 4339-4347 [doi]
- Consistency of Dictionary-Based Manifold LearningSamson J. Koelle, Hanyu Zhang, Octavian-Vlad Murad, Marina Meila. 4348-4356 [doi]
- Probabilistic Modeling for Sequences of Sets in Continuous-TimeYuxin Chang, Alex J. Boyd, Padhraic Smyth. 4357-4365 [doi]
- Causal Q-Aggregation for CATE Model SelectionHui Lan, Vasilis Syrgkanis. 4366-4374 [doi]
- Self-Supervised Quantization-Aware Knowledge DistillationKaiqi Zhao 0002, Ming Zhao. 4375-4383 [doi]
- FALCON: FLOP-Aware Combinatorial Optimization for Neural Network PruningXiang Meng, Wenyu Chen, Riade Benbaki, Rahul Mazumder. 4384-4392 [doi]
- The effect of Leaky ReLUs on the training and generalization of overparameterized networksYinglong Guo, Shaohan Li, Gilad Lerman. 4393-4401 [doi]
- Decentralized Multi-Level Compositional Optimization Algorithms with Level-Independent Convergence RateHongchang Gao. 4402-4410 [doi]
- Krylov Cubic Regularized Newton: A Subspace Second-Order Method with Dimension-Free Convergence RateRuichen Jiang, Parameswaran Raman, Shoham Sabach, Aryan Mokhtari, Mingyi Hong, Volkan Cevher. 4411-4419 [doi]
- Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical SystemsWesley Suttle, Vipul Kumar Sharma, Krishna Chaitanya Kosaraju, Seetharaman Sivaranjani, Ji Liu 0001, Vijay Gupta 0001, Brian M. Sadler. 4420-4428 [doi]
- Soft-constrained Schrödinger Bridge: a Stochastic Control ApproachJhanvi Garg, Xianyang Zhang, Quan Zhou. 4429-4437 [doi]
- Coreset Markov chain Monte CarloNaitong Chen, Trevor Campbell. 4438-4446 [doi]
- A General Theoretical Paradigm to Understand Learning from Human PreferencesMohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Rémi Munos, Mark Rowland, Michal Valko, Daniele Calandriello. 4447-4455 [doi]
- Policy Learning for Localized Interventions from Observational DataMyrl G. Marmarelis, Fred Morstatter, Aram Galstyan, Greg Ver Steeg. 4456-4464 [doi]
- Understanding the Generalization Benefits of Late Learning Rate DecayYinuo Ren, Chao Ma 0012, Lexing Ying. 4465-4473 [doi]
- Improved Regret Bounds of (Multinomial) Logistic Bandits via Regret-to-Confidence-Set ConversionJunghyun Lee, Se-Young Yun, Kwang-Sung Jun. 4474-4482 [doi]
- Near-Interpolators: Rapid Norm Growth and the Trade-Off between Interpolation and GeneralizationYutong Wang, Rishi Sonthalia, Wei Hu. 4483-4491 [doi]
- Identifiability of Product of Experts ModelsManav Kant, Eric Y. Ma, Andrei Staicu, Leonard J. Schulman, Spencer Gordon. 4492-4500 [doi]
- Gibbs-Based Information Criteria and the Over-Parameterized RegimeHaobo Chen, Gregory W. Wornell, Yuheng Bu. 4501-4509 [doi]
- Improving Robustness via Tilted Exponential Layer: A Communication-Theoretic PerspectiveBhagyashree Puranik, Ahmad Beirami, Yao Qin 0001, Upamanyu Madhow. 4510-4518 [doi]
- On the Generalization Ability of Unsupervised PretrainingYuyang Deng, Junyuan Hong, Jiayu Zhou, Mehrdad Mahdavi. 4519-4527 [doi]
- Non-vacuous Generalization Bounds for Adversarial Risk in Stochastic Neural NetworksWaleed Mustafa, Philipp Liznerski, Antoine Ledent, Dennis Wagner, Puyu Wang, Marius Kloft. 4528-4536 [doi]
- BLIS-Net: Classifying and Analyzing Signals on GraphsCharles Xu 0004, Laney Goldman, Valentina Guo, Benjamin Hollander-Bodie, Maedee Trank-Greene, Ian Adelstein, Edward De Brouwer, Rex Ying, Smita Krishnaswamy, Michael Perlmutter. 4537-4545 [doi]
- Think Before You Duel: Understanding Complexities of Preference Learning under Constrained ResourcesRohan Deb, Aadirupa Saha, Arindam Banerjee. 4546-4554 [doi]
- Fast Fourier Bayesian QuadratureHouston Warren, Fabio Ramos 0001. 4555-4563 [doi]
- Bounding Box-based Multi-objective Bayesian Optimization of Risk Measures under Input UncertaintyYu Inatsu, Shion Takeno, Hiroyuki Hanada, Kazuki Iwata, Ichiro Takeuchi. 4564-4572 [doi]
- To Pool or Not To Pool: Analyzing the Regularizing Effects of Group-Fair Training on Shared ModelsCyrus Cousins, I. Elizabeth Kumar, Suresh Venkatasubramanian. 4573-4581 [doi]
- Two Birds with One Stone: Enhancing Uncertainty Quantification and Interpretability with Graph Functional Neural ProcessLingkai Kong, Haotian Sun, Yuchen Zhuang, Haorui Wang, Wenhao Mu, Chao Zhang. 4582-4590 [doi]
- Sample Efficient Learning of Factored Embeddings of Tensor FieldsTaemin Heo, Chandrajit Bajaj. 4591-4599 [doi]
- autoMALA: Locally adaptive Metropolis-adjusted Langevin algorithmMiguel Biron-Lattes, Nikola Surjanovic, Saifuddin Syed, Trevor Campbell, Alexandre Bouchard-Côté. 4600-4608 [doi]
- Causal Bandits with General Causal Models and InterventionsZirui Yan, Dennis Wei, Dmitriy A. Katz, Prasanna Sattigeri, Ali Tajer. 4609-4617 [doi]
- Surrogate Active Subspaces for Jump-Discontinuous FunctionsNathan Wycoff. 4618-4626 [doi]
- Complexity of Single Loop Algorithms for Nonlinear Programming with Stochastic Objective and ConstraintsAhmet Alacaoglu, Stephen J. Wright 0001. 4627-4635 [doi]
- Information Theoretically Optimal Sample Complexity of Learning Dynamical Directed Acyclic GraphsMishfad Shaikh Veedu, Deepjyoti Deka, Murti V. Salapaka. 4636-4644 [doi]
- Pathwise Explanation of ReLU Neural NetworksSeongwoo Lim, Won Jo, Joohyung Lee, Jaesik Choi. 4645-4653 [doi]
- 0CORE Tensor Decomposition for Sparse Count DataJohn Hood, Aaron J. Schein. 4654-4662 [doi]
- Adaptive Federated Minimax Optimization with Lower ComplexitiesFeihu Huang, Xinrui Wang, Junyi Li, Songcan Chen. 4663-4671 [doi]
- Mixture-of-Linear-Experts for Long-term Time Series ForecastingRonghao Ni, Zinan Lin 0001, Shuaiqi Wang, Giulia Fanti. 4672-4680 [doi]
- On the price of exact truthfulness in incentive-compatible online learning with bandit feedback: a regret lower bound for WSU-UXAli Mortazavi, Junhao Lin, Nishant A. Mehta. 4681-4689 [doi]
- Faster Recalibration of an Online Predictor via ApproachabilityPrincewill Okoroafor, Robert D. Kleinberg, Wen Sun. 4690-4698 [doi]
- Provable Policy Gradient Methods for Average-Reward Markov Potential GamesMin Cheng, Ruida Zhou, P. R. Kumar 0001, Chao Tian 0002. 4699-4707 [doi]
- A Cubic-regularized Policy Newton Algorithm for Reinforcement LearningMizhaan Prajit Maniyar, Prashanth L. A., Akash Mondal, Shalabh Bhatnagar. 4708-4716 [doi]
- Towards Generalizable and Interpretable Motion Prediction: A Deep Variational Bayes ApproachJuanwu Lu, Wei Zhan, Masayoshi Tomizuka, Yeping Hu. 4717-4725 [doi]
- Understanding Inverse Scaling and Emergence in Multitask Representation LearningMuhammed Emrullah Ildiz, Zhe Zhao, Samet Oymak. 4726-4734 [doi]
- Sharpened Lazy Incremental Quasi-Newton MethodAakash Sunil Lahoti, Spandan Senapati, Ketan Rajawat, Alec Koppel. 4735-4743 [doi]
- Efficient Active Learning Halfspaces with Tsybakov Noise: A Non-convex Optimization ApproachYinan Li, Chicheng Zhang. 4744-4752 [doi]
- Theoretically Grounded Loss Functions and Algorithms for Score-Based Multi-Class AbstentionAnqi Mao, Mehryar Mohri, Yutao Zhong 0002. 4753-4761 [doi]
- Deep Classifier Mimicry without Data AccessSteven Braun, Martin Mundt, Kristian Kersting. 4762-4770 [doi]
- Data Driven Threshold and Potential Initialization for Spiking Neural NetworksVelibor Bojkovic, Srinivas Anumasa, Giulia De Masi, Bin Gu, Huan Xiong. 4771-4779 [doi]
- Revisiting the Noise Model of Stochastic Gradient DescentBarak Battash, Lior Wolf, Ofir Lindenbaum. 4780-4788 [doi]
- Warped Diffusion for Latent Differentiation InferenceMasahiro Nakano, Hiroki Sakuma, Ryo Nishikimi, Ryohei Shibue, Takashi Sato, Tomoharu Iwata, Kunio Kashino. 4789-4797 [doi]
- Provable Mutual Benefits from Federated Learning in Privacy-Sensitive DomainsNikita Tsoy, Anna Mihalkova, Teodora N. Todorova, Nikola Konstantinov. 4798-4806 [doi]
- Random Oscillators Network for Time Series ProcessingAndrea Ceni, Andrea Cossu, Maximilian W. Stölzle, Jingyue Liu 0001, Cosimo Della Santina, Davide Bacciu, Claudio Gallicchio. 4807-4815 [doi]
- Mitigating Underfitting in Learning to Defer with Consistent LossesShuqi Liu, Yuzhou Cao, Qiaozhen Zhang, Lei Feng, Bo An 0001. 4816-4824 [doi]
- Consistent Hierarchical Classification with A Generalized MetricYuzhou Cao, Lei Feng 0006, Bo An 0001. 4825-4833 [doi]
- SDEs for Minimax OptimizationEnea Monzio Compagnoni, Antonio Orvieto, Hans Kersting, Frank Proske, Aurélien Lucchi. 4834-4842 [doi]
- Differentially Private Reward Estimation with Preference FeedbackSayak Ray Chowdhury, Xingyu Zhou 0001, Nagarajan Natarajan. 4843-4851 [doi]
- Differentiable Rendering with Reparameterized Volume SamplingNikita Morozov, Denis Rakitin, Oleg Desheulin, Dmitry P. Vetrov, Kirill Struminsky. 4852-4860 [doi]
- Parameter-Agnostic Optimization under Relaxed SmoothnessFlorian Hübler, Junchi Yang, Xiang Li, Niao He. 4861-4869 [doi]
- Stochastic Frank-Wolfe: Unified Analysis and Zoo of Special CasesRuslan Nazykov, Aleksandr Shestakov, Vladimir Solodkin, Aleksandr Beznosikov, Gauthier Gidel, Alexander V. Gasnikov. 4870-4878 [doi]
- Efficient Conformal Prediction under Data HeterogeneityVincent Plassier, Nikita Kotelevskii, Aleksandr Rubashevskii, Fedor Noskov, Maksim Velikanov, Alexander Fishkov, Samuel Horváth, Martin Takác 0001, Eric Moulines, Maxim Panov. 4879-4887 [doi]
- Sample-efficient neural likelihood-free Bayesian inference of implicit HMMsSanmitra Ghosh, Paul Birrell, Daniela De Angelis. 4888-4896 [doi]
- Identifying Confounding from Causal Mechanism ShiftsSarah Mameche, Jilles Vreeken, David Kaltenpoth. 4897-4905 [doi]
- Tight Verification of Probabilistic Robustness in Bayesian Neural NetworksBen Batten, Mehran Hosseini, Alessio Lomuscio. 4906-4914 [doi]
- Testing exchangeability by pairwise bettingAytijhya Saha, Aaditya Ramdas. 4915-4923 [doi]