Random testing for higher-order, stateful programs

Casey Klein, Matthew Flatt, Robby Findler. Random testing for higher-order, stateful programs. In William R. Cook, Siobhán Clarke, Martin C. Rinard, editors, Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA. pages 555-566, ACM, Reno/Tahoe, Nevada, 2010. [doi]

Abstract

Testing is among the most effective tools available for finding bugs. Still, we know of no automatic technique for generating test cases that expose bugs involving a combination of mutable state and callbacks, even though objects and method overriding set up exactly that combination. For such cases, a test generator must create callbacks or subclasses that aggressively exercise side-effecting operations using combinations of generated objects.

This paper presents a new algorithm for randomly testing programs that use state and callbacks. Our algorithm exploits a combination of contracts and environment bindings to guide the test-case generator toward interesting inputs. Our prototype implementation for Racket (formerly PLT Scheme) - which has a Java-like class system, but with first-class classes as well as gbeta-like augmentable methods - uncovered dozens of bugs in a well-tested and widely used text-editor library.

We describe our approach in a precise, formal notation, borrowing the techniques used to describe operational semantics and type systems. The formalism enables us to provide a compact and self-contained explanation of the core of our technique without the ambiguity usually present in pseudo-code descriptions.