The following publications are possibly variants of this publication:
- Efficient Decoding of Systematic (23, 12, 7) and (41, 21, 9) Quadratic Residue CodesYan-Haw Chen, Chih-Hua Chien, Chien Hsiang Huang, Trieu-Kien Truong, Ming-Haw Jing. jise, 26(5):1831-1843, 2010. [doi]
- Algebraic decoding of the (41, 21, 9) Quadratic Residue codeTsung-Ching Lin, Trieu-Kien Truong, Hung-Peng Lee, Hsin-Chiu Chang. isci, 179(19):3451-3459, 2009. [doi]
- The algebraic decoding of the (41, 21, 9) quadratic residue codeIrving S. Reed, Trieu-Kien Truong, Xuemin Chen, Xiaowei Yin. TIT, 38(3):974-986, 1992.
- A Lookup Table Decoding of systematic (47, 24, 11) quadratic residue codeYan-Haw Chen, Trieu-Kien Truong, Chien Hsiang Huang, Chih-Hua Chien. isci, 179(14):2470-2477, 2009. [doi]
- Fast algorithm for decoding of systematic quadratic residue codesYan-Haw Chen, Trieu-Kien Truong. iet-com, 5(10):1361-1367, 2011. [doi]
- Efficient Software Method for Decoding of the (71, 36, 11) Quadratic Residue CodeChing-Fu Huang, Yan-Haw Chen. iih-msp 2015: 45-48 [doi]
- Decoding of binary quadratic residue codes with hash tableYan-Haw Chen, Ching-Fu Huang, Jack Chang. iet-com, 10(1):122-130, 2016. [doi]