The following publications are possibly variants of this publication:
- Distributed Federated Deep Learning in Clustered Internet of Things Wireless Networks With Data Similarity-Based Client ParticipationEvangelia Fragkou 0001, Eleftheria Chini, Maria Papadopoulou 0008, Dimitrios Papakostas, Dimitrios Katsaros 0001, Schahram Dustdar. internet, 28(6):53-61, November - December 2024. [doi]
- Multiagent Federated Deep-Reinforcement-Learning-Enabled Resource Allocation for an Air-Ground-Integrated Internet of Vehicles NetworkNan Li, Xiaoqin Song, Ke Li 0003, Rongtian Jiang, Jiajun Li. internet, 27(5):15-23, September - October 2023. [doi]
- Quantization Bits Allocation for Wireless Federated LearningMuhang Lan, Qing Ling 0001, Song Xiao, Wenyi Zhang 0001. TWC, 22(11):8336-8351, November 2023. [doi]
- Dynamic Aggregation for Heterogeneous Quantization in Federated LearningShengbo Chen, Cong Shen, Lanxue Zhang, Yuanmin Tang. TWC, 20(10):6804-6819, 2021. [doi]
- Quantized Distributed Federated Learning for Industrial Internet of ThingsTeng Ma, Haibo Wang, Chong Li. iotj, 10(4):3027-3036, February 15 2023. [doi]
- Federated Learning on Heterogeneous Images in Internet of Biomedical ThingsYusen Li, Zaobo He, Peilin He, Yulin Cao. bigdatama, 7(4):1237-1250, 2024. [doi]
- Federated Learning Based on CTC for Heterogeneous Internet of ThingsDemin Gao, Haoyu Wang, Xiuzhen Guo, Lei Wang 0042, Guan Gui, Weizheng Wang, Zhimeng Yin 0001, Shuai Wang 0008, Yunhuai Liu, Tian He 0001. iotj, 10(24):22673-22685, dec15 2023. [doi]