Another way to show $\mathrm{BPL} \subseteq \mathrm{CL}$ and $\mathrm{BPL} \subseteq \mathrm{P}$

James Cook. Another way to show $\mathrm{BPL} \subseteq \mathrm{CL}$ and $\mathrm{BPL} \subseteq \mathrm{P}$. Electronic Colloquium on Computational Complexity (ECCC), TR25, 2025. [doi]

@article{Cook25,
  title = {Another way to show $\mathrm{BPL} \subseteq \mathrm{CL}$ and $\mathrm{BPL} \subseteq \mathrm{P}$},
  author = {James Cook},
  year = {2025},
  url = {https://eccc.weizmann.ac.il/report/2025/016},
  researchr = {https://researchr.org/publication/Cook25},
  cites = {0},
  citedby = {0},
  journal = {Electronic Colloquium on Computational Complexity (ECCC)},
  volume = {TR25},
}