James Cook. Another way to show $\mathrm{BPL} \subseteq \mathrm{CL}$ and $\mathrm{BPL} \subseteq \mathrm{P}$. Electronic Colloquium on Computational Complexity (ECCC), TR25, 2025. [doi]
@article{Cook25,
title = {Another way to show $\mathrm{BPL} \subseteq \mathrm{CL}$ and $\mathrm{BPL} \subseteq \mathrm{P}$},
author = {James Cook},
year = {2025},
url = {https://eccc.weizmann.ac.il/report/2025/016},
researchr = {https://researchr.org/publication/Cook25},
cites = {0},
citedby = {0},
journal = {Electronic Colloquium on Computational Complexity (ECCC)},
volume = {TR25},
}