The following publications are possibly variants of this publication:
- Unsupervised Domain Adaptation via Contrastive Adversarial Domain Mixup: A Case Study on COVID-19Huimin Zeng 0001, Zhenrui Yue, Lanyu Shang, Yang Zhang 0031, Dong Wang 0002. tetc, 12(4):1105-1116, October - December 2024. [doi]
- Domain adaptation of time series via contrastive learning with task-specific consistencyTao Wu, Qiushu Chen, Dongfang Zhao 0001, Jinhua Wang, Linhua Jiang. apin, 54(23):12576-12588, December 2024. [doi]
- Unsupervised Domain Adaptation for COVID-19 Information Service with Contrastive Adversarial Domain MixupHuimin Zeng, Zhenrui Yue, Ziyi Kou, Lanyu Shang, Yang Zhang 0031, Dong Wang 0002. asunam 2022: 159-162 [doi]
- Contrastive Learning for Unsupervised Domain Adaptation of Time SeriesYilmazcan Özyurt, Stefan Feuerriegel, Ce Zhang 0001. iclr 2023: [doi]
- Source-free semi-supervised domain adaptation via progressive MixupNing Ma, Haishuai Wang, Zhen Zhang 0023, Sheng Zhou 0004, Hongyang Chen, Jiajun Bu. kbs, 262:110208, February 2023. [doi]
- Spatio-temporal Contrastive Domain Adaptation for Action RecognitionXiaolin Song, Sicheng Zhao, Jingyu Yang 0002, Huanjing Yue, Pengfei Xu 0013, Runbo Hu, Hua Chai. cvpr 2021: 9787-9795 [doi]
- CTDA: Contrastive Temporal Domain Adaptation for Action SegmentationHongfeng Han, Zhiwu Lu 0001, Ji-Rong Wen. mmm 2023: 562-574 [doi]
- Contrastive Domain Adaptation Via Delimitation DiscriminatorXing Wei, Bin Wen, Lei Chen, Yujie Liu, Chong Zhao, Yang Lu 0015. icassp 2023: 1-5 [doi]