The following publications are possibly variants of this publication:
- Mixed Transformer U-Net for Medical Image SegmentationHongyi Wang, Shiao Xie, Lanfen Lin, Yutaro Iwamoto, Xian-Hua Han, Yen-Wei Chen 0001, Ruofeng Tong 0001. icassp 2022: 2390-2394 [doi]
- BMCS-Net: A Bi-directional multi-scale cascaded segmentation network based on transformer-guided feature Aggregation for medical imagesBicao Li, Jing Wang 0080, Bei Wang, Zhuhong Shao, Wei Li, Jie Huang 0037, Panpan Li. cbm, 180:108939, 2024. [doi]
- TU-Net: U-shaped Structure Based on Transformers for Medical Image SegmentationJiamei Zhao, Dikang Wu, Zhifang Wang. icycsee 2022: 376-386 [doi]
- Cross Pyramid Transformer makes U-net stronger in medical image segmentationJinghua Zhu, Yue-sheng, Hui Cui 0002, Jiquan Ma, Jijian Wang, Heran Xi. bspc, 86(Part C):105361, September 2023. [doi]
- Multi-scale Neighborhood Attention Transformer on U-Net for Medical Image SegmentationNanxing Zhang, Shiqiang Ma, Xuejian Li, Jiahui Zhang, Jijun Tang, Fei Guo 0001. bibm 2022: 1381-1386 [doi]
- Multiscale transunet + + : dense hybrid U-Net with transformer for medical image segmentationBo Wang, Fan Wang, Pengwei Dong, Chongyi Li. sivp, 16(6):1607-1614, 2022. [doi]
- D-former: a U-shaped Dilated Transformer for 3D medical image segmentationYixuan Wu, Kuanlun Liao, Jintai Chen, Jinhong Wang, Danny Z. Chen, Honghao Gao, Jian Wu 0001. nca, 35(2):1931-1944, 2023. [doi]