The following publications are possibly variants of this publication:
- A time-incorporated SOFA score-based machine learning model for predicting mortality in critically ill patients: A multicenter, real-world studyYang Liu, Kun Gao, Hongbin Deng, Tong Ling, Jiajia Lin, Xianqiang Yu, Xiangwei Bo, Jing Zhou, Lin Gao, Peng Wang, Jiajun Hu, Jian Zhang, Zhihui Tong, Yuxiu Liu, Yinghuan Shi, Lu Ke, Yang Gao 0001, Weiqin Li. ijmi, 163:104776, 2022. [doi]
- Explainable machine learning to predict long-term mortality in critically ill ventilated patients: a retrospective study in central TaiwanMing-Cheng Chan, Kai-Chih Pai, Shao-An Su, Min-Shian Wang, Chieh-Liang Wu, Wen-Cheng Chao. midm, 22(1):75, 2022. [doi]
- Stratified Mortality Prediction of Patients with Acute Kidney Injury in Critical CareZhenxing Xu, Yuan Luo 0004, Prakash Adekkanattu, Jessica S. Ancker, Guoqian Jiang, Richard C. Kiefer, Jennifer A. Pacheco, Luke V. Rasmussen, Jyotishman Pathak, Fei Wang. medinfo 2019: 462-466 [doi]
- Development and validation of a deep interpretable network for continuous acute kidney injury prediction in critically ill patientsMeicheng Yang, Songqiao Liu, Tong Hao, Caiyun Ma, Hui Chen, Yuwen Li, ChangDe Wu, Jianfeng Xie, Haibo Qiu, Jianqing Li 0002, Yi Yang, Chengyu Liu 0001. artmed, 149:102785, 2024. [doi]
- Calibration drift in regression and machine learning models for acute kidney injurySharon E. Davis, Thomas A. Lasko, Guanhua Chen, Edward D. Siew, Michael E. Matheny. jamia, 24(6):1052-1061, 2017. [doi]