The following publications are possibly variants of this publication:
- Causal Disentanglement-Based Hidden Markov Model for Cross-Domain Bearing Fault DiagnosisRihao Chang, Yongtao Ma, Weizhi Nie, Jie Nie, Yiqun Zhu, An-An Liu. tnn, 36(8):13968-13982, August 2025. [doi]
- Generalized Gaussian Noise Distribution Enabled Sparse Representation Model for Bearing Fault DiagnosisBotao An, Shibin Wang, Ruqiang Yan, Weihua Li, XueFeng Chen. i2mtc 2020: 1-5 [doi]
- Bearing Fault Diagnosis With Incomplete Training Data: Fault Data With Partial DiametersDajian Huang, Wen-an Zhang 0001, Steven X. Ding. tase, 21(3):4298-4310, July 2024. [doi]
- Explainable and interpretable bearing fault classification and diagnosis under limited dataLuis Magadán, Cristobal Ruiz-Carcel, Juan C. Granda, Francisco J. Suárez, Andrew Starr 0001. aei, 62:102909, 2024. [doi]
- An Analysis Method for Interpretability of Convolutional Neural Network in Bearing Fault DiagnosisLiang Guo 0001, Xi Gu, Yaoxiang Yu, Andongzhe Duan, Hongli Gao. tim, 73:1-12, 2024. [doi]
- Gradient-Based Interpretable Graph Convolutional Network for Bearing Fault DiagnosisKairu Wen, Ruyi Huang, Dongpeng Li, Zhuyun Chen, Weihua Li 0004. i2mtc 2023: 1-6 [doi]
- Interpreting network knowledge with attention mechanism for bearing fault diagnosisZhibo Yang, Jun-Peng Zhang, Zhibin Zhao, Zhi Zhai, XueFeng Chen. asc, 97(Part):106829, 2020. [doi]