The following publications are possibly variants of this publication:
- MMFNet: A multi-modality MRI fusion network for segmentation of nasopharyngeal carcinomaHuai Chen, Yuxiao Qi, Yong Yin, TengXiang Li, Xiaoqing Liu, Xiuli Li, Guanzhong Gong, Lisheng Wang. ijon, 394:27-40, 2020. [doi]
- MRI Image Segmentation of Nasopharyngeal Carcinoma Using Multi-Scale Cascaded Fully Convolutional NetworkYanfen Guo, Zhe Cui, Xiaojie Li 0001, Jing Peng, Jinrong Hu, Zhipeng Yang, Tao Wu, Imran Mumtaz. iasc, 31(3):1771-1782, 2022. [doi]
- Self-Supervised Rotation Learning for 3D Segmentation on Nasopharyngeal Carcinoma MRI ImagesChangtai Li, Ruohui Jiang, Shihua Yin, Jinzhu Yang, Xiaojuan Ban. bibm 2023: 3529-3534 [doi]
- Deep learning for risk prediction in patients with nasopharyngeal carcinoma using multi-parametric MRIsBing-Zhong Jing, Yishu Deng, Tao Zhang 0006, Dan Hou, Bin Li, Mengyun Qiang, Kuiyuan Liu, Liangru Ke, Taihe Li, Ying Sun, Xing Lv, Chao-feng Li. cmpb, 197:105684, 2020. [doi]
- Joint Segmentation of Primary Nasopharyngeal Carcinoma Tumors and Lymph Nodes via Global AttentionGuihua Tao, Ziqin Ling, Haojiang Li, Jiangning Song, Hongmin Cai. bibm 2024: 2489-2496 [doi]