The following publications are possibly variants of this publication:
- Multiparameter MRI-based radiomics nomogram for preoperative prediction of brain invasion in atypical meningioma:a multicentre studyJinna Yu, Xin Kong, Dong Xie, Fei Zheng, Chao Wang, Dan Shi, Cong He, Xiaohong Li, Hongwei Xu, Shouwei Li, Xuzhu Chen. bmcmi, 24(1):134, December 2024. [doi]
- Integrating Radiomics and Deep Learning for Enhanced Three-Dimensional Meningioma GradingZhuo Zhang, Quanfeng Ma, Yuan Zhao, Xi Yang. icic 2025: 63-76 [doi]
- Deep learning-based automatic segmentation of meningioma from T1-weighted contrast-enhanced MRI for preoperative meningioma differentiation using radiomic featuresLiping Yang, Tianzuo Wang, Jinling Zhang, Shi Kang, Shichuan Xu, Kezheng Wang. bmcmi, 24(1):56, December 2024. [doi]
- Deep learning-based automatic segmentation of meningioma from T1-weighted contrast-enhanced MRI for preoperative meningioma differentiation using radiomic featuresLiping Yang, Tianfu Wang 0001, Jinling Zhang, Shi Kang, Shichuan Xu, Kezheng Wang. bmcmi, 24(1):56, December 2024. [doi]
- Unsupervised learning-based registration for T1 and T2 breast MRI imagesGuodong Zhang, Wei Guo, Lingyu Kong, Zhaoxuan Gong, Dazhe Zhao, Chong He, Cui Guo. isicdm 2020: 225-228 [doi]