The following publications are possibly variants of this publication:
- Predicting axillary lymph node metastasis from kinetic statistics of DCE-MRI breast imagesAhmed Bilal Ashraf, Lilie Lin, Sara C. Gavenonis, Carolyn Mies, Eric Xanthopoulos, Despina Kontos. micad 2012: 831525 [doi]
- Preoperative DBT-based radiomics for predicting axillary lymph node metastasis in breast cancer: a multi-center studyShuyan He, Biao Deng, Jiaqi Chen, Jiamin Li, Xuefeng Wang, Guanxing Li, Siyu Long, Jian Wan, Yan Zhang. bmcmi, 25(1):169, December 2025. [doi]
- Deep Learning Radiomics of Preoperative Breast MRI for Prediction of Axillary Lymph Node Metastasis in Breast CancerYanhong Chen, Lijun Wang, Xue-dong, Ran Luo, Yaqiong Ge, Huanhuan Liu, Yuzhen Zhang, Dengbin Wang. jdi, 36(4):1323-1331, August 2023. [doi]
- Multi-modal Learning with Missing Modality in Predicting Axillary Lymph Node MetastasisShichuan Zhang, Sunyi Zheng, Zhongyi Shui, Honglin Li 0001, Lin Yang 0012. bibm 2023: 2395-2400 [doi]
- Comparison of the Value of Color Doppler Ultrasound and Enhanced CT in the Early Diagnosis of Breast Cancer Axillary Lymph Node MetastasisXianghui Wan, Yuting Duan, Zhao Li, Wei Zhang, Surendar Omer. jmihi, 11(9):2464-2468, 2021. [doi]