The following publications are possibly variants of this publication:
- A Multi-Scale Feature Fusion Method Based on U-Net for Retinal Vessel SegmentationDan Yang 0003, Guoru Liu, Mengcheng Ren, Bin Xu 0010, Jiao Wang. entropy, 22(8):811, 2020. [doi]
- SegR-Net: A deep learning framework with multi-scale feature fusion for robust retinal vessel segmentationJihyoung Ryu, Mobeen-ur-Rehman, Imran Fareed Nizami, Kil To Chong 0001. cbm, 163:107132, September 2023. [doi]
- IMFF-Net: An integrated multi-scale feature fusion network for accurate retinal vessel segmentation from fundus imagesMingtao Liu, Yunyu Wang, Lei Wang, Shunbo Hu, Xing Wang, Qingman Ge. bspc, 91:105980, 2024. [doi]
- AFF-NET: An Adaptive Feature Fusion Network For Liver Vessel Segmentation From CT ImagesYujia Yuan, Deqiang Xiao, Shuo Yang, Zongyu Li, Haixiao Geng, Ying Gu, Jian Yang 0009. isbi 2023: 1-5 [doi]
- Dual encoding DDS-UNet liver tumour segmentation based on multi-scale deep and shallow feature fusionJianfeng Li, Yanmin Niu. iet-ipr, 18(5):1189-1199, 2024. [doi]
- A three-path network with multi-scale selective feature fusion, edge-inspiring and edge-guiding for liver tumor segmentationYuanyuan Shui, Zhendong Wang, Bin Liu, Wei Wang, Shujun Fu, Yuliang Li. cbm, 168:107841, January 2024. [doi]