The following publications are possibly variants of this publication:
- Detecting affective states in virtual rehabilitationJesús Joel Rivas, Felipe Orihuela-Espina, Luis Enrique Sucar, Lorena Palafox, Jorge Hernández-Franco, Nadia Bianchi-Berthouze. ph 2015: 287-292 [doi]
- Automatic Recognition of Multiple Affective States in Virtual Rehabilitation by Exploiting the Dependency RelationshipsJesús Joel Rivas, Felipe Orihuela-Espina, Luis Enrique Sucar, Amanda C. de C. Williams, Nadia Bianchi-Berthouze. acii 2019: 1-7 [doi]
- Multi-Label and Multimodal Classifier for Affective States Recognition in Virtual RehabilitationJesús Joel Rivas, Maria del Carmen Lara, Luis Castrejón, Jorge Hernández-Franco, Felipe Orihuela-Espina, Lorena Palafox, Amanda C. de C. Williams, Nadia Bianchi-Berthouze, Luis Enrique Sucar. taffco, 13(3):1183-1194, 2022. [doi]
- Recognition of Affective States in Virtual Rehabilitation using Late Fusion with Semi-Naive Bayesian ClassifierJesús Joel Rivas, Felipe Orihuela-Espina, Luis Enrique Sucar. ph 2019: 308-313 [doi]
- Unobtrusive Inference of Affective States in Virtual Rehabilitation from Upper Limb Motions: A Feasibility StudyJesús Joel Rivas, Felipe Orihuela-Espina, Lorena Palafox, Nadia Bianchi-Berthouze, Maria del Carmen Lara, Jorge Hernández-Franco, Luis Enrique Sucar. taffco, 11(3):470-481, 2020. [doi]
- How Can Affect Be Detected and Represented in Technological Support for Physical Rehabilitation?Temitayo A. Olugbade, Aneesha Singh, Nadia Bianchi-Berthouze, Nicolai Marquardt, Min S. H. Aung, Amanda C. de C. Williams. TOCHI, 26(1), 2019. [doi]