The following publications are possibly variants of this publication:
- Focal and efficient IOU loss for accurate bounding box regressionYi-Fan Zhang, Weiqiang Ren, Zhang Zhang 0001, Zhen Jia, Liang Wang, Tieniu Tan. ijon, 506:146-157, 2022. [doi]
- Ellipse IoU Loss: Better Learning for Rotated Bounding Box RegressionWenjie Li, Ronghua Shang, Zihan Ju, Jie Feng 0003, Songhua Xu, Weitong Zhang. lgrs, 21:1-5, 2024. [doi]
- Distance-IoU Loss: Faster and Better Learning for Bounding Box RegressionZhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang Ye, Dongwei Ren. AAAI 2020: 12993-13000 [doi]
- Manhattan-distance IOU loss for fast and accurate bounding box regression and object detectionYanyun Shen, Feizhao Zhang, Di Liu, Weihua Pu, Qingling Zhang 0005. ijon, 500:99-114, 2022. [doi]
- Gaussian-IoU loss: Better learning for bounding box regression on PCB component detectionXin Liu, Jinshuai Hu, Haixia Wang, Zhiguo Zhang, Xiao Lu, Chunyang Sheng, Shibin Song, Jun Nie. eswa, 190:116178, 2022. [doi]
- Absolute size IoU loss for the bounding box regression of the object detectionDi Tian, Yi Han 0004, Shu Wang, Xu Chen, Tian Guan. ijon, 500:1029-1040, 2022. [doi]
- Location IoU: A New Evaluation and Loss for Bounding Box Regression in Object DetectionLu Yang, Kai Zhang, Jiaqi Liu, Chongke Bi. ijcnn 2024: 1-8 [doi]