The following publications are possibly variants of this publication:
- A domain feature decoupling network for rotating machinery fault diagnosis under unseen operating conditionsTianyu Gao, Jingli Yang, Wenmin Wang, Xiaopeng Fan. ress, 252:110449, 2024. [doi]
- CIS2N: Causal independence and sparse shift network for rotating machinery fault diagnosis in unseen domainsChang Guo, Zuogang Shang, JiaXin Ren, Zhibin Zhao, Baoqing Ding, Shibin Wang, Xuefeng Chen 0002. ress, 251:110381, 2024. [doi]
- Adaptive manifold partial domain adaptation for fault transfer diagnosis of rotating machineryYi Qin 0004, Quan Qian, Zhengyi Wang, Yongfang Mao. eaai, 126:107082, November 2023. [doi]
- A novel domain generalization network with multidomain specific auxiliary classifiers for machinery fault diagnosis under unseen working conditionsRui Wang, Weiguo Huang, Yixiang Lu, Xiao Zhang, Jun Wang 0026, Chuancang Ding, Changqing Shen. ress, 238:109463, October 2023. [doi]
- Multistrategy Progressive Adaptation for Generalized Open-Set Cross-Working Condition Fault Diagnosis in Rotating MachineryLongde Wang, Hui Cao 0006, Tianjian Wang, Zeren Ai, Henglong Shen. tim, 74:1-13, 2025. [doi]
- Domain generalization for rotating machinery fault diagnosis: A surveyYiming Xiao, Haidong Shao, Shen Yan, Jie Wang, Ying Peng, Bin Liu. aei, 64:103063, 2025. [doi]
- Semi-Supervised Contrastive Domain Adaptation Network for Fault Diagnosis of Rotating Machinery Under Cross-Working ConditionsXingchi Lu, Liuyang Song, Changkun Han, Quansheng Jiang, Weiyang Xu, Huaqing Wang. iotj, 12(12):21552-21564, June 2025. [doi]