The following publications are possibly variants of this publication:
- Towards Understanding the Fragility of Multilingual LLMs against Fine-Tuning AttacksSamuele Poppi, Zheng Xin Yong, Yifei He, Bobbie Chern, Han Zhao 0002, Aobo Yang, Jianfeng Chi. naacl 2025: 2358-2372 [doi]
- Towards Context-Robust LLMs: A Gated Representation Fine-tuning ApproachShenglai Zeng, Pengfei He, Kai Guo 0003, Tianqi Zheng, Hanqing Lu, Yue Xing 0002, Hui Liu 0031. acl 2025: 10262-10276 [doi]
- Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit AnalysisXu Wang 0033, Yan Hu, Wenyu Du, Reynold Cheng, Benyou Wang, Difan Zou. icml 2025: [doi]
- FINE: LLM Prompt Tuning Fused with Internal and External Knowledge for EAEXin Guo, Le Zhang, Qian Chen 0023, Suge Wang, Jian Liao, Jianxing Zheng. ijcnn 2025: 1-8 [doi]
- BayesKD: Bayesian Knowledge Distillation for Compact LLMs in Constrained Fine-tuning ScenariosWei Li, Lujun Li 0001, Mark G. Lee, Shengjie Sun, Lei Zhang, Wei Xue, Yike Guo. acl 2025: 138-152 [doi]