The following publications are possibly variants of this publication:
- Establishing a ann model with in-situ hyperspectral data for estimation chlorophyll-a concentrations in Nanhu Lake of Changchun, ChinaKaishan Song, Bai Zhang, Hongtao Duan, Zongming Wang. igarss 2005: 5343-5346 [doi]
- Chlorophyll-a Estimation in Turbid Waters Using Combined SAR Data With Hyperspectral Reflectance Data: A Case Study in Lake Taihu, ChinaYuanzhi Zhang, Martti Hallikainen, Hongsheng Zhang, Hongtao Duan, Yu Li, X. San Liang. staeors, 11(4):1325-1336, 2018. [doi]
- Classification of Southern Corn Rust Severity Based on Leaf-Level Hyperspectral Data Collected under Solar IlluminationJianmeng Gao, Mingliang Ding, Qiuyu Sun, Jiayu Dong, Huanyi Wang, Zhanhong Ma. remotesensing, 14(11):2551, 2022. [doi]
- Winter wheat chlorophyll content retrieval based on machine learning using in situ hyperspectral dataTianli Wang, Maofang Gao, Chunling Cao, Jiong You, Xiwang Zhang, Lanzhi Shen. cea, 193:106728, 2022. [doi]
- A Unified Model for Remotely Estimating Chlorophyll a in Lake Taihu, China, Based on SVM and ::::In Situ Hyperspectral Data::::Deyong Sun, Yunmei Li, Qiao Wang. tgrs, 47(8-2):2957-2965, 2009. [doi]