The following publications are possibly variants of this publication:
- n-Net, for Liver and Liver Tumor Segmentation in CTSong-Toan Tran, Ching-Hwa Cheng, Don-Gey Liu. access, 9:3752-3764, 2021. [doi]
- CPAD-Net: Contextual parallel attention and dilated network for liver tumor segmentationXuehu Wang, Shuping Wang, Zhiling Zhang, Xiaoping Yin, Tianqi Wang, Nie Li. bspc, 79(Part):104258, 2023. [doi]
- A Densely Connected UNet3D Network Combined Attention Mechanism for Liver and Tumor SegmentationHewen Xi, Junxi Chen, Dongping Xiong, Xiaofeng He, Aiping Qu, Lingna Chen. jmihi, 11(5):1463-1470, 2021. [doi]
- Liver Tumor Segmentation of CT Image by Using Deep Fully Convolutional NetworkLingmin Jin, Rui Ma, Meng Zhao, Shenghua Teng, Zuoyong Li. ml4cs 2020: 170-179 [doi]
- MA-Net: A Multi-Scale Attention Network for Liver and Tumor SegmentationTongle Fan, Guanglei Wang, Yan Li, Hongrui Wang. access, 8:179656-179665, 2020. [doi]
- DHT-Net: Dynamic Hierarchical Transformer Network for Liver and Tumor SegmentationRuiyang Li, Longchang Xu, Kun Xie, Jianfeng Song, Xiaowen Ma, Liang Chang 0003, Qingsen Yan. titb, 27(7):3443-3454, July 2023. [doi]
- Liver tumor segmentation in CT volumes using an adversarial densely connected networkLei Chen, Hong Song, Chi Wang, Yutao Cui, Jian Yang 0009, Xiaohua Hu, Le Zhang. bmcbi, 20-S(16), 2019. [doi]
- Study on Liver Tumor Segmentation Technology Based on Fully Convolutional NetworksWeibin Mu, Jingyu Li, Dandan Liu, Yu Sun, Chunlan Zhao, Jianyu Hou, Lei Wang, Lin Lin. csia 2021: 718-723 [doi]