The following publications are possibly variants of this publication: 
- Improving deep label noise learning with dual active label correctionShao-Yuan Li, Ye Shi, Sheng-Jun Huang, Songcan Chen. ml, 111(3):1103-1124, 2022.  [doi] 
- CLC: A Consensus-based Label Correction Approach in Federated LearningBixiao Zeng, Xiaodong Yang 0005, Yiqiang Chen, Hanchao Yu, Yingwei Zhang. tist, 13(5), 2022.  [doi] 
- Tackling Noisy Clients in Federated Learning with End-to-end Label CorrectionXuefeng Jiang, Sheng Sun, Jia Li, Jingjing Xue, Runhan Li, Zhiyuan Wu, Gang Xu, Yuwei Wang, Min Liu 0001. CIKM 2024: 1015-1026 [doi] 
- Staged Noise Perturbation for Privacy-Preserving Federated LearningZhe Li, Honglong Chen, Yudong Gao, Zhichen Ni, Huansheng Xue, Huajie Shao. tsusc, 9(6):936-947, November - December 2024.  [doi] 
- Federated Data Quality Assessment Approach: Robust Learning With Mixed Label NoiseBixiao Zeng, Xiaodong Yang 0005, Yiqiang Chen, Hanchao Yu, Chunyu Hu, Yingwei Zhang 0002. tnn, 35(12):17620-17634, December 2024.  [doi]