The following publications are possibly variants of this publication:
- Scale-Specific Prediction of Topsoil Organic Carbon Contents Using Terrain Attributes and SCMaP Soil Reflectance CompositesMarkus Möller, Simone Zepp, Martin Wiesmeier, Heike Gerighausen, Uta Heiden. remotesensing, 14(10):2295, 2022. [doi]
- Transferability of Covariates to Predict Soil Organic Carbon in Cropland SoilsTom Broeg, Michael Blaschek, Steffen Seitz, Ruhollah Taghizadeh-Mehrjardi, Simone Zepp, Thomas Scholten. remotesensing, 15(4):876, February 2023. [doi]
- Soil organic carbon estimation using spaceborne hyperspectral composites on a large scaleXiangyu Zhao 0002, Zhitong Xiong, Paul Karlshöfer, Nikolaos Tziolas, Martin Wiesmeier, Uta Heiden, Xiao Xiang Zhu 0001. aeog, 140:104504, 2025. [doi]
- Evaluating Soil Reflectance Composites generated by SCMaP using different Sentinel-2 reflectance data inputsUta Heiden, Pablo d'Angelo, Peter Schwind, Raquel De los Reyes, Rupert Müller. igarss 2021: 495-498 [doi]
- Soil Organic Carbon Estimation in Croplands by Hyperspectral Remote APEX Data Using the LUCAS Topsoil DatabaseFabio Castaldi, Sabine Chabrillat, Arwyn Jones, Kristin Vreys, Bart Bomans, Bas van Wesemael. remotesensing, 10(2):153, 2018. [doi]