Biologically Rationalized Computing Techniques For Image Processing Applications

Maria Aparecida de Jesus, Maria de Jesus, Maria Aparecida de Jesus, Vania Vieira Estrela, Osamu Saotome, Osamu Saotome, Dalmo Stutz, Vania Vieira Estrela, Vania Vieira Estrela, Vania Vieira Estrela, others. Biologically Rationalized Computing Techniques For Image Processing Applications. In Biologically Rationalized Computing Techniques For Image Processing Applications. Volume 25 of pages 317-337, Lecture Notes in Computational Vision and Biomechanics (LNCVB), Springer Cham, Online ISBN 978-3-319-61316-1, Print ISBN 978-3-319-61315-4, doi: 10.1007/978-3-319-61316-1\_14,\_14, 2017. [doi]


  • Super Resolution of Images and VideoAggelos K. Katsaggelos, Rafael Molina, Javier Mateos. Synthesis Lectures on Image, Video, and Multimedia Processing, Morgan & Claypool Publishers, 2007. [doi]
  • Irani M, Peleg S (1990) Super resolution from image sequences. Proceedings of the ICPR, vol 2, pp 115–120
  • Kennedy J, Eberhart R (1995) Particle swarm optimization. Proceedings of the 1995 IEEE international conference on neural networks, IEEE, pp 1942–1948. doi: 10.1109/ICNN.1995.488968
  • Hemanth DJ, Vijila CKS, Anitha J (2010) Performance improved PSO based modified counter propagation neural network for abnormal mr brain image classification. Int J Adv Soft Comput Appl 2(1):65–84
  • Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680
  • Jesus MA, Estrela VV, Saotome O (2016) Super-resolution in a nutshell. Proceedings of the Brazilian technology symposium 2016 (BTSym 2016). ISSN 2447-8326. V. 1
  • Tom BC, Galatsanos NP, Katsaggelos AK (2002) Reconstruction of a high resolution image from multiple low resolution images. Chaudhuri S (ed) Super-resolution imaging. Kluwer, Norwell
  • Brandi F, de Queiroz RL, Mukherjee D (2008) Super-resolution of video using key frames and motion estimation. Proceedings of IEEE international conference on image processing, USA, pp 321–324
  • Wyawahare MV, Patil PM, Abhyankar H (2009) Image registration techniques: an overview. Int J Sig Process Image Process Pattern Recogn 2:11–28
  • Feng K, Zhou T, Cui J, Tana J (2014) An example image super-resolution algorithm based on modified k-Means with hybrid particle swarm optimization. Optoelectronic imaging and multimedia technology III. Dai Q, Shimura T (eds) Proceedings of SPIE ,vol 9273, 92731I. doi: 10.1117/12.2073216
  • Lukeš T, Hagen GM, Křížek P, Švindrych Z, Fliegel K, Klíma M (2014) Comparison of image reconstruction methods for structured illumination microscopy. Proceedings of SPIE 9129
  • Tsai RY, Huang TS (1984) Multiframe image restoration and registration. Advances in computer vision and image processing, vol 1, chap 7, pp 317–339, JAI Press, Greenwich, Conn, USA
  • Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann Arbor, MI
  • Silva Filho P, Rodrigues M, Saotome O, Shiguemori EH (2014) Fuzzy-based automatic landmark recognition in aerial images using ORB for aerial auto-localization. Bebis G et al (eds) Advances in visual computing, vol 8887, LNCS, 467-476, Springer, Berlin
  • Singh P, Sharma J (2016) A review paper on image denoising by low rank matrix decomposition and genetic algorithm. Int J Eng Sci Res Technol 5, 7:166–681. doi: 10.5281/zenodo.56923
  • Reibman AR, Bell RM, Gray S (2006) Quality assessment for super-resolution image enhancement. Proceedings of IEEE international conference on image processing. USA, pp 2017–2020
  • Hemanth DJ, Anitha J (2013) Modified cross-over techniques in genetic algorithms for performance enhancement of retinal image classification system, Proceedings of the 3rd international conference on computational intelligence and information technology, pp 28–34, IET, Mumbai, India, doi: 10.1049/cp.2013.2587
  • Yang J, Wright J, Huang T, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873
  • Timmis J, Neal M, Hunt J (2000) An artificial immune system for data analysis. BioSystems 55(1):143–150. doi: 10.1016/S0303-2647(99)00092-1
  • Imran M, Hashima R, Khalidb NEA (2013) An overview of particle swarm optimization variants. Proceedings of the 2012 Malaysian Technical Universities conference on engineering and technology (MUCET 2012), Part 4: information and communication technology, Procedia Eng 53:491–496
  • Holden N, Freitas AA (2008) A hybrid PSO/ACO algorithm for discovering classification rules in data mining. J Artif Evol Appl 2008. doi: 10.1155/2008/316145
  • Jestin VK, Anitha J, Hemanth DJ (2011) Genetic algorithm for retinal image analysis. Int J Comput Appl 1:48–52
  • Fogel LJ, Owens AJ, Walsh MJ (1965) Artificial intelligence through a simulation of evolution. Maxfield M, Callahan A, Fogel LJ (eds) Biophysics and cybernetic systems, In: Proceedings of the 2nd cybernetic sciences symposium, pp 131–155
  • Su H, Wu Y, Zhou J (2012) Super-resolution without dense flow. IEEE Trans Image Process 21(4):1782–1795
  • Thangaraj R, Pant M, Abraham A, Bouvry P (2011) Particle swarm optimization: hybridization perspectives and experimental illustrations. Appl Math Comput 217:5208–5226
  • Anitha J, Vijila CKS, Hemanth DJ (2011) An overview of computational intelligence techniques for retinal disease identification applications. Int J Rev Comput 5(1):29–46
  • Altunbasak Y, Patti AJ, Mersereau RM (2002) Super-resolution still and video reconstruction from MPEG-coded video. IEEE Trans Circuits Syst Video Tech 12:217–226
  • Al-Najjar YAY, Soong DC (2012) Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI. Int J Sci Eng Res 3(8). ISSN 2229-5518
  • Lin CL, Mimori A, Chen YW (2012) Hybrid particle swarm optimization and its application to multimodal 3D medical image registration. Comput Intell Neurosci 2012. doi: 10.1155/2012/561406
  • Anitha J, Vijila CKS, Selvakumar AI, Hemanth DJ (2012) Performance improved PSO based modified kohonen neural network for retinal image classification. J Chin Inst Eng 35(8):979–991
  • Robinson D, Milanfar P (2006) Statistical performance analysis of super-resolution. IEEE Trans Image Process 15(6):1413–1428
  • Rouet IM, Jacq II, Roux C (2000) Genetic algorithms for a robust 3-D MR-CT registration. IEEE Trans Inf Tech Biomed 4(2):126–136
  • Dorigo M, Stutzle T (2004) Ant colony optimization (ACO)
  • Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Proc 13(4):600–612
  • Anitha J, Vijila CKS, Hemanth DJ (2009) Comparative analysis of GA and PSO algorithms for abnormal retinal image classification. Int J Recent Trends Eng 2(3):143–145
  • Li Q, Sato I, Murakami Y (2007) Affine registration of multimodality images by optimization of mutual information using a stochastic gradient approximation technique. Proceedings of the 2007 IEEE international geoscience and remote sensing symposium (IGARSS 2007). doi: 10.1109/IGARSS.2007.4422814
  • Costa GH, Bermudez J (2009) Registration errors: are they always bad for super-resolution? IEEE Trans Signal Proc 57(10):3815–3826
  • Price K, Storn R (1995) Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, International Computer Science Institute, Berkley
  • Retrieved on 21 Nov 2016

Cited by

No citations of this publication recorded.