5 | -- | 0 | Moshe Y. Vardi. communications of the ACM |
7 | -- | 0 | Vinton G. Cerf. Open access to academic research |
8 | -- | 9 | . do have ethics |
10 | -- | 11 | Mark Guzdial. Balancing teaching CS efficiently with motivating students |
12 | -- | 14 | Don Monroe. Deep learning takes on translation |
15 | -- | 16 | Chris Edwards. Optimization search finds a heart of glass |
17 | -- | 19 | Sarah Underwood. Potential and peril |
20 | -- | 22 | Neil Savage. Weaving the web |
24 | -- | 25 | . Big data |
26 | -- | 28 | Peter G. Neumann. Trustworthiness and truthfulness are essential |
29 | -- | 30 | Leslie Goodyear, Gary Silverstein, Linda P. Thurston. The influence and promise of alliances |
31 | -- | 32 | George V. Neville-Neil. Forced exception handling |
33 | -- | 39 | Peter J. Denning. Remaining trouble spots with computational thinking |
40 | -- | 45 | Devon H. O'Dell. The debugging mind-set |
46 | -- | 50 | Pat Helland, Simon Weaver, Ed Harris. Too big NOT to fail |
51 | -- | 54 | Kate Matsudaira, Erik Meijer. Conversations with technology leaders: Erik Meijer |
56 | -- | 65 | David Barrera, Laurent Chuat, Adrian Perrig, Raphael M. Reischuk, Pawel Szalachowski. The SCION internet architecture |
66 | -- | 70 | Yili Liu, Lina Zhou. The dynamics of work-family conflict |
72 | -- | 80 | David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, Franklyn Turbak. Learnable programming: blocks and beyond |
82 | -- | 83 | Jitendra Malik. Technical Perspective: What led computer vision to deep learning? |
84 | -- | 90 | Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. ImageNet classification with deep convolutional neural networks |
91 | -- | 0 | Avi Wigderson. Technical Perspective: Low-depth arithmetic circuits |
93 | -- | 100 | Ankit Gupta 0001, Pritish Kamath, Neeraj Kayal, Ramprasad Saptharishi. Unexpected power of low-depth arithmetic circuits |
104 | -- | 0 | Leah Hoffmann. This is for everyone |