- Jozsef Katona, Klara Ida Katonane Gyonyoru. Integrating AI-based adaptive learning into the flipped classroom model to enhance engagement and learning outcomes. Comput. Educ. Artif. Intell., 8:100392, 2025.
- Lucas Wiese, Indira Patil, Daniel S. Schiff, Alejandra J. Magana. AI ethics education: A systematic literature review. Comput. Educ. Artif. Intell., 8:100405, 2025.
- Feng Lin 0006, Chenchen Li, Wei Ying Rebekah Lim, Yew Haur Lee. Empower instructors with actionable insights: Mine and visualize student written feedback for instructors' reflection. Comput. Educ. Artif. Intell., 8:100389, 2025.
- Ji Yoon Jung, Lillian Tyack, Matthias von Davier. Towards the implementation of automated scoring in international large-scale assessments: Scalability and quality control. Comput. Educ. Artif. Intell., 8:100375, 2025.
- Rochman Hadi Mustofa, Trian Gigih Kuncoro, Dwi Atmono, Hardika Dwi Hermawan, Sukirman. Extending the technology acceptance model: The role of subjective norms, ethics, and trust in AI tool adoption among students. Comput. Educ. Artif. Intell., 8:100379, 2025.
- Anna Radtke, Nikol Rummel. Generative AI in academic writing: Does information on authorship impact learners' revision behavior?. Comput. Educ. Artif. Intell., 8:100350, 2025.
- André Markus, Maximilian Baumann, Jan Pfister, Astrid Carolus, Andreas Hotho, Carolin Wienrich. Safer interaction with IVAs: The impact of privacy literacy training on competent use of intelligent voice assistants. Comput. Educ. Artif. Intell., 8:100372, 2025.
- Radiah Haque, Hui-Ngo Goh, Choo-Yee Ting, Albert Quek, Md. Rakibul Hasan. Leveraging LLMs for optimised feature selection and embedding in structured data: A case study on graduate employment classification. Comput. Educ. Artif. Intell., 8:100356, 2025.
- Liu Dong, Xiuxiu Tang, Xiyu Wang. Examining the effect of artificial intelligence in relation to students' academic achievement: A meta-analysis. Comput. Educ. Artif. Intell., 8:100400, 2025.
- Guan-Yun Wang, Yasuhiro Hatori, Yoshiyuki Sato, Chia-huei Tseng, Satoshi Shioiri. Predicting learners' engagement and help-seeking behaviors in an e-learning environment by using facial and head pose features. Comput. Educ. Artif. Intell., 8:100387, 2025.