- Fredrik Hellström, Giuseppe Durisi, Benjamin Guedj, Maxim Raginsky. Generalization Bounds: Perspectives from Information Theory and PAC-Bayes. Foundations and Trends in Machine Learning, 18(1):1-223, 2025.
- Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa M. Zintgraf, Chelsea Finn, Shimon Whiteson. A Tutorial on Meta-Reinforcement Learning. Foundations and Trends in Machine Learning, 18(2-3):224-384, 2025.
- David Jacob Kedziora, Katarzyna Musial, Bogdan Gabrys. AutonoML: Towards an Integrated Framework for Autonomous Machine Learning. Foundations and Trends in Machine Learning, 17(4):590-766, 2024.
- Xuanyi Dong, David Jacob Kedziora, Katarzyna Musial, Bogdan Gabrys. Automated Deep Learning: Neural Architecture Search Is Not the End. Foundations and Trends in Machine Learning, 17(5):767-920, 2024.
- Andrea Montanari, Subhabrata Sen. A Friendly Tutorial on Mean-Field Spin Glass Techniques for Non-Physicists. Foundations and Trends in Machine Learning, 17(1):1-173, 2024.
- George H. Chen. An Introduction to Deep Survival Analysis Models for Predicting Time-to-Event Outcomes. Foundations and Trends in Machine Learning, 17(6):921-1100, 2024.
- Drago Plecko, Elias Bareinboim. Causal Fairness Analysis: A Causal Toolkit for Fair Machine Learning. Foundations and Trends in Machine Learning, 17(3):304-589, 2024.
- Pierre Alquier. User-friendly Introduction to PAC-Bayes Bounds. Foundations and Trends in Machine Learning, 17(2):174-303, 2024.
- Anastasios N. Angelopoulos, Stephen Bates. Conformal Prediction: A Gentle Introduction. Foundations and Trends in Machine Learning, 16(4):494-591, 2023.
- Lingfei Wu, Yu Chen 0022, Kai Shen, Xiaojie Guo 0002, Hanning Gao, Shucheng Li, Jian Pei, Bo Long. Graph Neural Networks for Natural Language Processing: A Survey. Foundations and Trends in Machine Learning, 16(2):119-328, 2023.