- Frederic Rothe, R. Liu, Martin Lames. Estimating the Relevance of First Offensive Shot Tactics in Table Tennis via Simulation Based on a Finite Markov Chain Model. Int. J. Comp. Sci. Sport, 24(1):1-16, 2025.
- Y. Xie, Vladimir Y. Mariano. Deep Learning with 3D ResNets for Comprehensive Dual-Lane Speed Climbing Video Analysis. Int. J. Comp. Sci. Sport, 24(1):17-34, 2025.
- Kazuhiro Yamada, Keisuke Fujii 0001. Two clusterings to capture basketball players' shooting tendencies using tracking data: clustering of shooting styles and the shots themselves. Int. J. Comp. Sci. Sport, 24(1):35-55, 2025.
- Chloe Leddy, Richard Bolger, Paul J. Byrne, Sharon Kinsella, Lilibeth Zambrano. The application of Machine and Deep Learning for technique and skill analysis in swing and team sport-specific movement: A systematic review. Int. J. Comp. Sci. Sport, 23(1):110-145, 2024.
- Jordan Truman Paul Noel, Vinicius Prado da Fonseca, AmÃlcar Soares. The Use of Momentum-Inspired Features in Pre-Game Prediction Models for the Sport of Ice Hockey. Int. J. Comp. Sci. Sport, 23(1):1-21, 2024.
- Chenyi Zhang, WeiJian Zhu, Li Bo, Zhu Zhiyong, Zhu Feng. A Review on the Application of Artificial Intelligence in Basketball Sports. Int. J. Comp. Sci. Sport, 23(2):62-90, 2024.
- Sandisiwe Khanyisa Thisani. Developing a High-Performance Sports Results Prediction Artificial Neural Network: Case Study on World Championship Boxing. Int. J. Comp. Sci. Sport, 23(2):1-21, 2024.
- Borhanudin Mohd Yusof Mohamed, Rabiu Muazu Musa, Mohamad Nizam Nazarudin, Anwar P. P. Abdul Majeed, Naresh Bhaskar Raj, Mohd Azraai Mohd Razman. Development of Anthro-Fitness Model for Evaluating Firefighter Recruits' Performance Readiness Using Machine Learning. Int. J. Comp. Sci. Sport, 23(2):91-108, 2024.
- Cyy. Yang, O. Kolbinger. Exploring Premier League Clubs Performance and Home-Away Differences Based on Passing Network Analysis. Int. J. Comp. Sci. Sport, 23(2):51-61, 2024.
- Patrick Blauberger, T. Fukushima, T. G. Russomanno, Martin Lames. A Pilot Study in Sensor Instrumented Training (SIT) - Ground Contact Time for Monitoring Fatigue and Curve Running Technique. Int. J. Comp. Sci. Sport, 23(1):80-92, 2024.