- Bana Fridath Bio Nigan, Alban Gildas Zohoun, Ahmed Dooguy KORA. Study of AI-Based Solutions for Automatic Detection of Some Diseases Related to Red Blood Cells in West Africa. iJOE, 21(4):99-109, 2025.
- Saadia Azeroual, Zakaria Hamane, Rajaa Sebihi, Fatima Ezzahraa Ben Bouazza. Toward Improved Glioma Mortality Prediction: A Multimodal Framework Combining Radiomic and Clinical Features. iJOE, 21(5):31-46, 2025.
- Zakaria El Khadiri, Rachid Latif, Amine Saddik. Improving Monitoring of Heart Rate Using an RGB Camera and OpenCL Architecture: Towards a Heterogenous Embedded System Implementation. iJOE, 21(2):63-83, 2025.
- Aouatif Arqane, Omar Boutkhoum. Smart Defense: Harnessing Hybrid Deep Learning Models for Resilient IoT Intrusion Detection. iJOE, 21(6):141-154, 2025.
- Matthew Guo, Zhiyun Zhang, Pablo Orduña, Rania Hussein. RHL-Butterfly: A Scalable IoT-Based Digital Twinning Platform for Embedded Systems and Remote Laboratories. iJOE, 21(4):4-28, 2025.
- Gustavo Enrique Meza Salcedo, James Gino Evangelista Vilela, José Luis Herrera Salazar, Fabricio Alexandro Navarro Fabian. Neural Network-Based Support System to Improve Alzheimer's Detection Using Magnetic Resonance Imaging. iJOE, 21(4):110-124, 2025.
- Zulhipni Reno Saputra Elsi, Deris Stiawan, Bhakti Yudho Suprapto, M. Agus Syamsul Arifin, Mohd Yazid Idris, Rahmat Budiarto. Enhanced Intrusion Detection in IoT Smart Homes: Leveraging Binary and Multi-Class Classification Models. iJOE, 21(5):63-86, 2025.
- Muhammad Dhanil, Fatni Mufit. Augmented Reality with the Cognitive Conflict Model: What Is Effective for Improving Students' Scientific Literacy of Dynamic Fluid Material?. iJOE, 21(3):103-115, 2025.
- Rismayani, Amil Ahmad Ilham, Andani Achmad, Muhammad Rifqy Yudhiestra Rachman. Convolutional Neural Network with Feature Extraction to Improve the Classification Accuracy of Multi-Class Facial Skin Disorders. iJOE, 21(3):4-19, 2025.
- Sofyan Elidrissi, Ikram Ben Abdel Ouahab, Mohammed Bouhorma, Fatiha Elouaai. Unveiling the Clinical Significance of Microsatellite Instability in Colorectal Cancer: Deep Learning and the Segment Anything Model for Accurate Segmentation and Classification. iJOE, 21(6):97-110, 2025.