Journal: Machine Learning

Volume 1, Issue 4

363 -- 366Pat Langley, Ryszard S. Michalski. Machine Learning and Discovery
367 -- 401Brian Falkenhainer, Ryszard S. Michalski. Integrating Quantitative and Qualitative Discovery: The ABACUS System
403 -- 422Mieczyslaw M. Kokar. Determining Arguments of Invariant Functional Descriptions
423 -- 451Donald Rose, Pat Langley. Chemical Discovery as Belief Revision
453 -- 454Thomas G. Dietterich. News and Notes

Volume 1, Issue 3

243 -- 248Pat Langley. Editorial: Human and Machine Learning
249 -- 286Bruce W. Porter, Dennis F. Kibler. Experimental Goal Regression: A Method for Learning Problem-Solving Heuristics
287 -- 316Thomas G. Dietterich. Learning at the Knowledge Level
317 -- 354Jeffrey C. Schlimmer, Richard H. Granger. Incremental Learning from Noisy Data
355 -- 358Yves Kodratoff, Gheorghe Tecuci, Thomas G. Dietterich. News and Notes

Volume 1, Issue 2

141 -- 144Pat Langley. Editorial: The Terminology of Machine Learning
145 -- 176Gerald DeJong, Raymond J. Mooney. Explanation-Based Learning: An Alternative View
177 -- 226Larry A. Rendell. A General Framework for Induction and a Study of Selective Induction
227 -- 242Thomas G. Dietterich, Nicholas S. Flann, David C. Wilkins. News and Notes

Volume 1, Issue 1

5 -- 10Pat Langley. On Machine Learning
11 -- 46John E. Laird, Paul S. Rosenbloom, Allen Newell. Chunking in Soar: The Anatomy of a General Learning Mechanism
47 -- 80Tom M. Mitchell, Richard M. Keller, Smadar T. Kedar-Cabelli. Explanation-Based Generalization: A Unifying View
81 -- 106J. Ross Quinlan. Induction of Decision Trees
107 -- 136Jan M. Zytkow, Herbert A. Simon. A Theory of Historical Discovery: The Construction of Componential Models