Journal: Machine Learning

Volume 22, Issue 1-3

5 -- 6Thomas G. Dietterich. Editorial
7 -- 9Leslie Pack Kaelbling. Introduction
11 -- 32David E. Moriarty, Risto Miikkulainen. Efficient Reinforcement Learning through Symbiotic Evolution
33 -- 57Steven J. Bradtke, Andrew G. Barto. Linear Least-Squares Algorithms for Temporal Difference Learning
59 -- 94John N. Tsitsiklis, Benjamin Van Roy. Feature-Based Methods for Large Scale Dynamic Programming
95 -- 121Robert E. Schapire, Manfred K. Warmuth. On the Worst-Case Analysis of Temporal-Difference Learning Algorithms
123 -- 158Satinder P. Singh, Richard S. Sutton. Reinforcement Learning with Replacing Eligibility Traces
159 -- 195Sridhar Mahadevan. Average Reward Reinforcement Learning: Foundations, Algorithms, and Empirical Results
197 -- 225Matthias Heger. The Loss from Imperfect Value Functions in Expectation-Based and Minimax-Based Tasks
227 -- 250Sven Koenig, Reid G. Simmons. The Effect of Representation and Knowledge on Goal-Directed Exploration with Reinforcement-Learning Algorithms
251 -- 281Richard Maclin, Jude W. Shavlik. Creating Advice-Taking Reinforcement Learners
283 -- 290Jing Peng, Ronald J. Williams. Incremental Multi-Step Q-Learning