- Hayden McAlister, Anthony Robins, Lech Szymanski. Prototype Analysis in Hopfield Networks With Hebbian Learning. Neural Computation, 36(11):2322-2364, 2024.
- Zeyuan Wang, Luis Cruz. Trainable Reference Spikes Improve Temporal Information Processing of SNNs With Supervised Learning. Neural Computation, 36(10):2136-2169, 2024.
- Jan Karbowski, Paulina Urban. Cooperativity, Information Gain, and Energy Cost During Early LTP in Dendritic Spines. Neural Computation, 36(2):271-311, February 2024.
- Theodore Jerome Tinker, Kenji Doya, Jun Tani. Intrinsic Rewards for Exploration Without Harm From Observational Noise: A Simulation Study Based on the Free Energy Principle. Neural Computation, 36(9):1854-1885, 2024.
- Vicky Zhu, Robert Rosenbaum. Learning Fixed Points of Recurrent Neural Networks by Reparameterizing the Network Model. Neural Computation, 36(8):1568-1600, 2024.
- Niels J. Verosky. Associative Learning of an Unnormalized Successor Representation. Neural Computation, 36(7):1410-1423, 2024.
- Vincent Painchaud, Patrick Desrosiers, Nicolas Doyon. The Determining Role of Covariances in Large Networks of Stochastic Neurons. Neural Computation, 36(6):1121-1162, 2024.
- Kei Uchizawa, Haruki Abe. Trade-Offs Between Energy and Depth of Neural Networks. Neural Computation, 36(8):1541-1567, 2024.
- Daniel Kunin, Javier Sagastuy-Breña, Lauren Gillespie, Eshed Margalit, Hidenori Tanaka, Surya Ganguli, Daniel L. K. Yamins. The Limiting Dynamics of SGD: Modified Loss, Phase-Space Oscillations, and Anomalous Diffusion. Neural Computation, 36(1):151-174, January 2024.
- Travis Monk, Nik Dennler, Nicholas Ralph, Shavika Rastogi, Saeed Afshar, Pablo Urbizagastegui, Russell Jarvis, André van Schaik, Andrew Adamatzky. Electrical Signaling Beyond Neurons. Neural Computation, 36(10):1939-2029, 2024.