- Jason M. Altschuler, Kunal Talwar. Resolving the Mixing Time of the Langevin Algorithm to Its Stationary Distribution for Log-Concave Sampling. SIMODS, 7(3):993-1020, 2025.
- Aimee Maurais, Terrence Alsup, Benjamin Peherstorfer, Youssef M. Marzouk. Multifidelity Covariance Estimation via Regression on the Manifold of Symmetric Positive Definite Matrices. SIMODS, 7(1):189-223, 2025.
- Rahul Parhi, Michael Unser. Function-Space Optimality of Neural Architectures with Multivariate Nonlinearities. SIMODS, 7(1):110-135, 2025.
- Jiamin Liu, Junzhuo Gao, Heng Lian. Kernel-Based Regularized Learning with Random Projections: Beyond Least Squares. SIMODS, 7(1):253-273, 2025.
- Zixuan Cang, Yaqi Wu, Yanxiang Zhao. Supervised Gromov-Wasserstein Optimal Transport with Metric-Preserving Constraints. SIMODS, 7(1):301-328, 2025.
- Jeremy E. Cohen, Valentin Leplat. Efficient Algorithms for Regularized Nonnegative Scale-Invariant Low-Rank Approximation Models. SIMODS, 7(2):468-494, 2025.
- Gage DeZoort, Boris Hanin. Principles for Initialization and Architecture Selection in Graph Neural Networks with ReLU Activations. SIMODS, 7(1):1-27, 2025.
- Giovanni Conforti, Alain Durmus, Marta Gentiloni Silveri. KL Convergence Guarantees for Score Diffusion Models under Minimal Data Assumptions. SIMODS, 7(1):86-109, 2025.
- Suzanna Parkinson, Greg Ongie, Rebecca Willett. ReLU Neural Networks with Linear Layers Are Biased towards Single- and Multi-index Models. SIMODS, 7(3):1021-1052, 2025.
- Julia Lindberg, Carlos Améndola, Jose Israel Rodriguez. Estimating Gaussian Mixtures Using Sparse Polynomial Moment Systems. SIMODS, 7(1):224-252, 2025.