38 | -- | 0 | Jianke Yu, Hanchen Wang 0001, Chen Chen 0017, Xiaoyang Wang 0002, Lu Qin 0001, Wenjie Zhang 0001, Ying Zhang 0001, Xijuan Liu. RIDA: a robust attack framework on incomplete graphs |
39 | -- | 0 | Xujiang Li, Jie Hu, Jingling Wang, Tianrui Li. A dynamic graph attention network with contrastive learning for knowledge graph completion |
40 | -- | 0 | Yihan Mei, Xinyu Wang, Changzhi Sun, Dell Zhang, Xiaoling Wang. Multi-label out-of-distribution detection with spectral normalized joint energy |
41 | -- | 0 | . Editor's note: Special Issue on Data Security Governance Technologies for Web 3.0 |
42 | -- | 0 | Xushuo Tang, Liuyi Chen, Wenke Yang, Zhengyi Yang 0001, Mingchen Ju, Xin Shu, Zihan Yang, Yifu Tang. Tabular-textual question answering: From parallel program generation to large language models |
43 | -- | 0 | Elio Masciari, Enea Vincenzo Napolitano. Assessing awareness of environmental sustainability in machine learning research |
44 | -- | 0 | Yuuki Ohmori, Hiroyuki Kitagawa, Toshiyuki Amagasa, Akiyoshi Matono. Integration of knowledge bases and external sources using user-defined predicates and adaptive entity linking |
45 | -- | 0 | Yu Liu, Qi Luo, Yanwei Zheng, Zhipeng Cai 0001, Dongxiao Yu. Efficient traversal for core maintenance in large-scale dynamic hypergraphs |
46 | -- | 0 | Shaoqiang Zhu, Qiang Wang, Kejia Zhang, Haiwei Pan. Contrastive learning for next-basket recommendation |
47 | -- | 0 | Chunying Li, Yanxi Guo, Zhikang Tang, Wenbo Li, Yang Chen, Jinli Cao, Yanchun Zhang, Jianjian Jiang. MHGCL: Combining Motif and Homogeneity in graph contrastive learning |
48 | -- | 0 | Karim Benouaret. Balancing the scales: fair API service selection through adaptive provider adjustment |
49 | -- | 0 | Shuiqiao Yang, Bao Gia Doan, Paul Montague, Olivier Y. de Vel, Tamas Abraham, Alsharif Abuadbba, Ehsan Abbasnejad, Seyit Camtepe, Damith C. Ranasinghe, Salil S. Kanhere. Graph spectral purification for backdoor defence in graph neural networks |
50 | -- | 0 | Ngoc Luyên Lê, Marie-Hélène Abel. Integrating context and criteria: a multi-head attention-based approach for multi-criteria group recommender systems |