The following publications are possibly variants of this publication:
- USFM: A universal ultrasound foundation model generalized to tasks and organs towards label efficient image analysisJing Jiao, Jin Zhou, Xiaokang Li, Menghua Xia, Yi Huang, Lihong Huang, Na Wang, Xiaofan Zhang, Shichong Zhou, Yuanyuan Wang 0001, Yi Guo 0002. mia, 96:103202, 2024. [doi]
- FDAS: Foundation Model Distillation and Anatomic Structure-Aware Multi-task Learning for Self-Supervised Medical Image SegmentationXiaoran Qi, Guoning Zhang 0002, Jianghao Wu 0001, Shaoting Zhang 0001, Xiaorong Hou, Guotai Wang. miccai 2026: 192-202 [doi]
- An Empirical Study on the Fairness of Foundation Models for Multi-Organ Image SegmentationQing Li 0001, Yizhe Zhang 0001, Yan Li 0064, Jun Lyu, Meng Liu, Longyu Sun, Mengting Sun, Qirong Li, Wenyue Mao, Xinran Wu, Yajing Zhang, Yinghua Chu, Shuo Wang 0011, Chengyan Wang. miccai 2024: 432-442 [doi]
- Curriculum Prompting Foundation Models for Medical Image SegmentationXiuqi Zheng, Yuhang Zhang, Haoran Zhang, Hongrui Liang, Xueqi Bao, Zhuqing Jiang, Qicheng Lao. miccai 2024: 487-497 [doi]
- CAT: Coordinating Anatomical-Textual Prompts for Multi-Organ and Tumor SegmentationZhongzhen Huang, Yankai Jiang 0003, Rongzhao Zhang, Shaoting Zhang 0001, Xiaofan Zhang 0002. nips 2024: [doi]
- Anatomical Embedding-Based Training Method for Medical Image Segmentation Foundation ModelsMingrui Zhuang, Rui Xu, Qinhe Zhang, Ailian Liu, Xin Fan, Hongkai Wang. miccai 2025: 143-152 [doi]