The following publications are possibly variants of this publication:
- Automatic multi-modality segmentation of gross tumor volume for head and neck cancer radiotherapy using 3D U-NetZhe Guo, Ning Guo, Kuang Gong, Quanzheng Li. micad 2019: 1095009 [doi]
- SegRap2023: A benchmark of organs-at-risk and gross tumor volume Segmentation for Radiotherapy Planning of Nasopharyngeal CarcinomaXiangde Luo, Jia Fu, Yunxin Zhong, Shuolin Liu, Bing Han, Mehdi Astaraki, Simone Bendazzoli, Iuliana Toma-Dasu, Yiwen Ye, Ziyang Chen, Yong Xia 0001, Yanzhou Su, Jin Ye, Junjun He, Zhaohu Xing, Hongqiu Wang, Lei Zhu 0003, Kaixiang Yang, Xin Fang, Zhiwei Wang, Chan Woong Lee, Sang Joon Park, Jaehee Chun, Constantin Ulrich, Klaus H. Maier-Hein, Nchongmaje Ndipenoch, Alina Dana Miron, Yongmin Li 0001, Yimeng Zhang, Yu Chen, Lu Bai, Jinlong Huang, Chengyang An, Lisheng Wang, Kaiwen Huang, Yunqi Gu, Tao Zhou, Mu Zhou, Shichuan Zhang, Wenjun Liao, Guotai Wang, Shaoting Zhang 0001. mia, 101:103447, 2025. [doi]
- Automatic segmentation of the clinical target volume and organs at risk for rectal cancer radiotherapy using structure-contextual representations based on 3D high-resolution networkYiwei Yang, Rui Huang, Guofeng Lv, Zhiqiang Hu, Guoping Shan, Jie Zhang, Xue Bai, Peng Liu, Hongsheng Li 0001, Ming Chen. bspc, 73:103362, 2022. [doi]