BSkyTree: scalable skyline computation using a balanced pivot selection

Jongwuk Lee, Seung-won Hwang. BSkyTree: scalable skyline computation using a balanced pivot selection. In Ioana Manolescu, Stefano Spaccapietra, Jens Teubner, Masaru Kitsuregawa, Alain Léger, Felix Naumann, Anastasia Ailamaki, Fatma Özcan, editors, EDBT 2010, 13th International Conference on Extending Database Technology, Lausanne, Switzerland, March 22-26, 2010, Proceedings. Volume 426 of ACM International Conference Proceeding Series, pages 195-206, ACM, 2010. [doi]

Abstract

Skyline queries have gained a lot of attention for multi-criteria analysis in large-scale datasets. While existing skyline algorithms have focused mostly on exploiting data dominance to achieve efficiency, we propose that data incomparability should be treated as another key factor in optimizing skyline computation. Specifically, to optimize both factors, we first identify common modules shared by existing non-index skyline algorithms, and then analyze them to develop a cost model to guide a balanced pivot point selection. Based on the cost model, we lastly implement our balanced pivot selection in two algorithms, BSkyTree-S and BSkyTree-P, treating both dominance and incomparability as key factors. Our experimental results demonstrate that proposed algorithms outperform state-of-the-art skyline algorithms up to two orders of magnitude.