The following publications are possibly variants of this publication:
- Joint High-Order Multi-Task Feature Learning to Predict the Progression of Alzheimer's DiseaseLodewijk Brand, Hua Wang, Heng Huang, Shannon L. Risacher, Andrew J. Saykin, Li Shen 0001. miccai 2018: 555-562 [doi]
- Feature-aware Multi-task feature learning for Predicting Cognitive Outcomes in Alzheimer's diseasePeng Cao 0001, Shanshan Tang, Min Huang 0001, Jinzhu Yang, Dazhe Zhao, Amine Trabelsi, Osmar R. Zaïane. bibm 2019: 1-5 [doi]
- Generalized fused group lasso regularized multi-task feature learning for predicting cognitive outcomes in Alzheimers diseasePeng Cao 0001, Xiaoli Liu, Hezi Liu, Jinzhu Yang, Dazhe Zhao, Min Huang 0001, Osmar R. Zaïane. cmpb, 162:19-45, 2018. [doi]
- High-Order Multi-Task Feature Learning to Identify Longitudinal Phenotypic Markers for Alzheimer's Disease Progression PredictionHua Wang, Feiping Nie, Heng Huang, Jingwen Yan, Sungeun Kim, Shannon L. Risacher, Andrew J. Saykin, Li Shen. nips 2012: 1286-1294 [doi]
- Analyzing Mild Cognitive Impairment Progression via Multi-view Structural LearningLi Wang, Paul M. Thompson, Dajiang Zhu. ipmi 2019: 656-668 [doi]
- Adaptive Multi-Cognitive Objective Temporal Task Approach for Predicting AD ProgressionXuanhan Fan, Menghui Zhou, Yu Zhang 0128, Jun Qi 0001, Yun Yang 0003, Po Yang 0001. bibm 2024: 1933-1938 [doi]
- Hybrid multi-modality multi-task learning for forecasting progression trajectories in subjective cognitive declineMinhui Yu, Yuqi Fang, Yunbi Liu, Andrea C. Bozoki, Shifu Xiao, Ling Yue, Mingxia Liu 0001. NN, 186:107263, 2025. [doi]