The following publications are possibly variants of this publication:
- PPsNet: An improved deep learning model for microsatellite instability high prediction in colorectal cancer from whole slide imagesJingjiao Lou, Jiawen Xu, Yuyan Zhang, Yuhong Sun, Aiju Fang, Jixuan Liu, Luis A. J. Mur, Bing Ji. cmpb, 225:107095, 2022. [doi]
- Ensemble transformer-based multiple instance learning to predict pathological subtypes and tumor mutational burden from histopathological whole slide images of endometrial and colorectal cancerChing-Wei Wang, Tzu-Chien Liu, Po-Jen Lai, Hikam Muzakky, Yu-Chi Wang, Mu-Hsien Yu, Chia-Hua Wu, Tai-Kuang Chao. mia, 99:103372, 2025. [doi]
- Microsatellite Instability Prediction of Uterine Corpus Endometrial Carcinoma Based on H&E Histology Whole-Slide ImagingTongxin Wang, Weijia Lu, Fan Yang, Li Liu, Zhongyi Dong, Weimin Tang, Jia Chang, Wenjing Huan, Kun Huang 0004, Jianhua Yao. isbi 2020: 1289-1292 [doi]
- Joint Region-Attention and Multi-scale Transformer for Microsatellite Instability Detection from Whole Slide Images in Gastrointestinal CancerZhilong Lv, Rui Yan, Yuexiao Lin, Ying Wang, Fa Zhang 0001. miccai 2022: 293-302 [doi]
- DHS-CapsNet: Dual horizontal squash capsule networks for lung and colon cancer classification from whole slide histopathological imagesKwabena Adu, Yongbin Yu, Jingye Cai, Kwabena Owusu-Agyemang, Baidenger Agyekum Twumasi, Xiangxiang Wang. imst, 31(4):2075-2092, 2021. [doi]