The hardness and approximation algorithms for l-diversity

Xiaokui Xiao, Ke Yi, Yufei Tao. The hardness and approximation algorithms for l-diversity. In Ioana Manolescu, Stefano Spaccapietra, Jens Teubner, Masaru Kitsuregawa, Alain Léger, Felix Naumann, Anastasia Ailamaki, Fatma Özcan, editors, EDBT 2010, 13th International Conference on Extending Database Technology, Lausanne, Switzerland, March 22-26, 2010, Proceedings. Volume 426 of ACM International Conference Proceeding Series, pages 135-146, ACM, 2010. [doi]

Abstract

The existing solutions to privacy preserving publication can be classified into the theoretical and heuristic categories. The former guarantees provably low information loss, whereas the latter incurs gigantic loss in the worst case, but is shown empirically to perform well on many real inputs. While numerous heuristic algorithms have been developed to satisfy advanced privacy principles such as l-diversity, t-closeness, etc., the theoretical category is currently limited to k-anonymity which is the earliest principle known to have severe vulnerability to privacy attacks. Motivated by this, we present the first theoretical study on l-diversity, a popular principle that is widely adopted in the literature. First, we show that optimal l-diverse generalization is NP-hard even when there are only 3 distinct sensitive values in the microdata. Then, an (l*d)-approximation algorithm is developed, where d is the dimensionality of the underlying dataset. This is the first known algorithm with a non-trivial bound on information loss. Extensive experiments with real datasets validate the effectiveness and efficiency of proposed solution.