The following publications are possibly variants of this publication:
- Energy Efficient IRS Assisted NOMA Aided Mobile Edge Computing via Heterogeneous Multi-Agent Reinforcement LearningJiadong Yu, Yang Li, Xiaolan Liu, Bo Sun 0004, Yuan Wu 0001, Danny H. K. Tsang. icc 2023: 5352-5357 [doi]
- A Novel Heterogeneous Computing Middleware for Mobile AI ServicesZihao Shao, Tonghua Su, Manyang Xu, Qinglin Liu, Ruipeng Han, Zhongjie Wang. edge 2022: 184-191 [doi]
- Machine learning enabled distributed mobile edge computing networkJunchao Ma, Hao-Hsuan Chang, Pingzhi Fan, Lingjia Liu. edge 2019: 350-351 [doi]
- Joint Optimization of Task Offloading and Resource Allocation via Deep Reinforcement Learning for Augmented Reality in Mobile Edge NetworkXing Chen, Guizhong Liu. edge 2020: 76-82 [doi]
- Cache-Aided NOMA Mobile Edge Computing: A Reinforcement Learning ApproachZhong Yang, Yuanwei Liu, Yue Chen, Naofal Al-Dhahir. TWC, 19(10):6899-6915, 2020. [doi]
- Energy-Efficient Design for IRS-Assisted NOMA-Based Mobile Edge ComputingZhiguo Xu, Jianxin Liu, Junwei Zou, Zhigang Wen. icl, 26(7):1618-1622, 2022. [doi]