The following publications are possibly variants of this publication:
- Automated segmentation of mammary gland regions in non-contrast torso CT images based on probabilistic atlasXiangrong Zhou, M. Kan, Takeshi Hara, Hiroshi Fujita 0001, Keiko Sugisaki, Ryujiro Yokoyama, Gobert N. Lee, Hiroaki Hoshi. miip 2007: [doi]
- Automatic quantification of mammary glands on non-contrast x-ray CT by using a novel segmentation approachXiangrong Zhou, Takuya Kano, Yunliang Cai, Shuo Li, Xinxin Zhou, Takeshi Hara, Ryujiro Yokoyama, Hiroshi Fujita 0001. micad 2016: [doi]
- Automated segmentation of middle hepatic vein in non-contrast x-ray CT images based on an atlas-driven approachTeruhiko Kitagawa, Xiangrong Zhou, Takeshi Hara, Hiroshi Fujita 0001, Ryujiro Yokoyama, Hiroshi Kondo, Masayuki Kanematsu, Hiroaki Hoshi. miip 2008: [doi]
- Automated segmentation of hepatic vessel trees in non-contrast x-ray CT imagesSuguru Kawajiri, Xiangrong Zhou, Xuejin Zhang, Takeshi Hara, Hiroshi Fujita 0001, Ryujiro Yokoyama, Hiroshi Kondo, Masayuki Kanematsu, Hiroaki Hoshi. miip 2007: [doi]
- Constructing a Probabilistic Model for Automated Liver Region Segmentation Using Non-contrast X-Ray Torso CT imagesXiangrong Zhou, Teruhiko Kitagawa, Takeshi Hara, Hiroshi Fujita, Xuejun Zhang, Ryujiro Yokoyama, Hiroshi Kondo, Masayuki Kanematsu, Hiroaki Hoshi. miccai 2006: 856-863 [doi]
- A hybrid approach for mammary gland segmentation on CT images by embedding visual explanations from a deep learning classifier into a Bayesian inferenceXiangrong Zhou, Seiya Yamagishi, Takeshi Hara, Hiroshi Fujita 0001. micad 2021: [doi]
- An automated detection method of mammographic masses existing around thick-mammary-gland and near chest-wall regionsYuji Hatanaka, Takeshi Hara, Hiroshi Fujita, Satoshi Kasai, Tokiko Endo, Takuji Iwase. cars 2001: 560-566
- A fully automatic method to mammary gland segmentationChien-Chuan Ko, Chun-Hung Lin, Kai-Sheng Liao, Chi-Yang Chen. intcompsymp 2015: 1116-1124 [doi]