Abstract is missing.
- Query Learning Strategies Using Boosting and BaggingNaoki Abe, Hiroshi Mamitsuka. 1-9 
 - Genetic Programming and Deductive-Inductive Learning: A Multi-Strategy ApproachRicardo Aler, Daniel Borrajo, Pedro Isasi. 10-18 
 - An Experimental Evaluation of Coevolutive Concept LearningCosimo Anglano, Attilio Giordana, Giuseppe Lo Bello, Lorenza Saitta. 19-27 
 - KnightCap: A Chess Programm That Learns by Combining TD(lambda) with Game-Tree SearchJonathan Baxter, Andrew Tridgell, Lex Weaver. 28-36 
 - Combining Nearest Neighbor Classifiers Through Multiple Feature SubsetsStephen D. Bay. 37-45 
 - Learning Collaborative Information FiltersDaniel Billsus, Michael J. Pazzani. 46-54 
 - Top-Down Induction of Clustering TreesHendrik Blockeel, Luc De Raedt, Jan Ramon. 55-63 
 - A Supra-Classifier Architecture for Scalable Knowledge ReuseKurt D. Bollacker, Joydeep Ghosh. 64-72 
 - Learning Sorting and Decision Trees with POMDPsBlai Bonet, Hector Geffner. 73-81 
 - Feature Selection via Concave Minimization and Support Vector MachinesPaul S. Bradley, Olvi L. Mangasarian. 82-90 
 - Refining Initial Points for K-Means ClusteringPaul S. Bradley, Usama M. Fayyad. 91-99 
 - Finite-Time Regret Bounds for the Multiarmed Bandit ProblemNicolò Cesa-Bianchi, Paul Fischer. 100-108 
 - Bayesian Classifiers Are Large Margin Hyperplanes in a Hilbert SpaceNello Cristianini, John Shawe-Taylor, Peter Sykacek. 109-117 
 - The MAXQ Method for Hierarchical Reinforcement LearningThomas G. Dietterich. 118-126 
 - A Process-Oriented Heuristic for Model SelectionPedro Domingos. 127-135 
 - Relational Reinforcement LearningSaso Dzeroski, Luc De Raedt, Hendrik Blockeel. 136-143 
 - Generating Accurate Rule Sets Without Global OptimizationEibe Frank, Ian H. Witten. 144-151 
 - Using a Permutation Test for Attribute Selection in Decision TreesEibe Frank, Ian H. Witten. 152-160 
 - Multistrategy Learning for Information ExtractionDayne Freitag. 161-169 
 - An Efficient Boosting Algorithm for Combining PreferencesYoav Freund, Raj D. Iyer, Robert E. Schapire, Yoram Singer. 170-178 
 - Bayesian Network Classification with Continuous Attributes: Getting the Best of Both Discretization and Parametric FittingNir Friedman, Moisés Goldszmidt, Thomas J. Lee. 179-187 
 - The Kernel-Adatron Algorithm: A Fast and Simple Learning Procedure for Support Vector MachinesThilo-Thomas Frieß, Nello Cristianini, Colin Campbell. 188-196 
 - Multi-criteria Reinforcement LearningZoltán Gábor, Zsolt Kalmár, Csaba Szepesvári. 197-205 
 - Local Cascade GeneralizationJoao Gama. 206-214 
 - A Learning Rate Analysis of Reinforcement Learning Algorithms in Finite-HorizonFrédérick Garcia, Seydina M. Ndiaye. 215-223 
 - Well-Behaved Borgs, Bolos, and BerserkersDiana F. Gordon. 224-232 
 - Solving a Huge Number of Similar Tasks: A Combination of Multi-Task Learning and a Hierarchical Bayesian ApproachTom Heskes. 233-241 
 - Multiagent Reinforcement Learning: Theoretical Framework and an AlgorithmJunling Hu, Michael P. Wellman. 242-250 
 - Coevolutionary Learning: A Case StudyHugues Juillé, Jordan B. Pollack. 251-259 
 - Near-Optimal Reinforcement Learning in Polynominal TimeMichael J. Kearns, Satinder P. Singh. 260-268 
 - A Fast, Bottom-Up Decision Tree Pruning Algorithm with Near-Optimal GeneralizationMichael J. Kearns, Yishay Mansour. 269-277 
 - An Analysis of Actor/Critic Algorithms Using Eligibility Traces: Reinforcement Learning with Imperfect Value FunctionHajime Kimura, Shigenobu Kobayashi. 278-286 
 - Using Learning for Approximation in Stochastic ProcessesDaphne Koller, Raya Fratkina. 287-295 
 - An Information-Theoretic Definition of SimilarityDekang Lin. 296-304 
 - Structural Machine Learning with Galois Lattice and GraphsMichel Liquiere, Jean Sallantin. 305-313 
 - Learning a Language-Independent Representation for Terms from a Partially Aligned CorpusMichael L. Littman, Fan Jiang, Greg A. Keim. 314-322 
 - Using Eligibility Traces to Find the Best Memoryless Policy in Partially Observable Markov Decision ProcessesJohn Loch, Satinder P. Singh. 323-331 
 - Learning to Locate an Object in 3D Space from a Sequence of Camera ImagesDimitris Margaritis, Sebastian Thrun. 332-340 
 - Multiple-Instance Learning for Natural Scene ClassificationOded Maron, Aparna Lakshmi Ratan. 341-349 
 - Employing EM and Pool-Based Active Learning for Text ClassificationAndrew McCallum, Kamal Nigam. 350-358 
 - Improving Text Classification by Shrinkage in a Hierarchy of ClassesAndrew McCallum, Ronald Rosenfeld, Tom M. Mitchell, Andrew Y. Ng. 359-367 
 - A Case Study in the Use of Theory Revision in Requirements ValidationT. L. McCluskey, Margaret Mary West. 368-376 
 - Stochastic Resonance with Adaptive Fuzzy SystemsSanya Mitaim, Bart Kosko. 377-385 
 - Q2: Memory-Based Active Learning for Optimizing Noisy Continuous FunctionsAndrew W. Moore, Jeff G. Schneider, Justin A. Boyan, Mary S. Lee. 386-394 
 - Collaborative Filtering Using Weighted Majority Prediction AlgorithmsAtsuyoshi Nakamura, Naoki Abe. 395-403 
 - On Feature Selection: Learning with Exponentially Many Irrelevant Features as Training ExamplesAndrew Y. Ng. 404-412 
 - On the Power of Decision ListsRichard Nock, Pascal Jappy. 413-420 
 - An Analysis of Direct Reinforcement Learning in Non-Markovian DomainsMark D. Pendrith, Michael McGarity. 421-429 
 - A Randomized ANOVA Procedure for Comparing Performance CurvesJustus H. Piater, Paul R. Cohen, Xiaoqin Zhang, Michael Atighetchi. 430-438 
 - Classification Using Phi-Machines and Constructive Function ApproximationDoina Precup, Paul E. Utgoff. 439-444 
 - The Case against Accuracy Estimation for Comparing Induction AlgorithmsFoster J. Provost, Tom Fawcett, Ron Kohavi. 445-453 
 - Theory Refinement of Bayesian Networks with Hidden VariablesSowmya Ramachandran, Raymond J. Mooney. 454-462 
 - Learning to Drive a Bicycle Using Reinforcement Learning and ShapingJette Randløv, Preben Alstrøm. 463-471 
 - Learning First-Order Acyclic Horn Programs from EntailmentChandra Reddy, Prasad Tadepalli. 472-480 
 - RL-TOPS: An Architecture for Modularity and Re-Use in Reinforcement LearningMalcolm R. K. Ryan, Mark D. Pendrith. 481-487 
 - Evolving Structured Programs with Hierarchical Instructions and Skip NodesRafal Salustowicz, Jürgen Schmidhuber. 488-496 
 - An Investigation of Transformation-Based Learning in DiscourseKen Samuel, Sandra Carberry, K. Vijay-Shanker. 497-505 
 - Automatic Segmentation of Continuous Trajectories with Invariance to Nonlinear Warpings of TimeLawrence K. Saul. 506-514 
 - Ridge Regression Learning Algorithm in Dual VariablesCraig Saunders, Alexander Gammerman, Volodya Vovk. 515-521 
 - Value Function Based Production SchedulingJeff G. Schneider, Justin A. Boyan, Andrew W. Moore. 522-530 
 - Heading in the Right DirectionHagit Shatkay, Leslie Pack Kaelbling. 531-539 
 - A Neural Network Model for Prognostic PredictionW. Nick Street. 540-546 
 - Learning the Grammar of DanceJoshua M. Stuart, Elizabeth Bradley. 547-555 
 - Intra-Option Learning about Temporally Abstract ActionsRichard S. Sutton, Doina Precup, Satinder P. Singh. 556-564 
 - Teaching an Agent to Test StudentsGheorghe Tecuci, Harry Keeling. 565-573 
 - The Problem with Noise and Small DisjunctsGary M. Weiss, Haym Hirsh. 574