A simplified cervix model in response to induction balloon in pre-labour

James Andrew Smith. A simplified cervix model in response to induction balloon in pre-labour. Theoretical Biology and Medical Modelling, 10(1):58-58, 2013.

Abstract

Background Induction of labour is poorly understood even though it is performed in 20% of births in the United States. One method of induction, the balloon dilator applied with traction to the interior os of the cervix, engages a softening process, permitting dilation and effacement to proceed until the beginning of active labour. The purpose of this work is to develop a simple model capable of reproducing the dilation and effacement effect in the presence of a balloon. Methods The cervix, anchored by the uterus and the endopelvic fascia was modelled in pre-labour. The spring-loaded, double sliding-joint, double pin-joint mechanism model was developed with a Modelica-compatible system, MapleSoft MapleSim 6.1, with a stiff Rosenbrock solver and 1E-4 absolute and relative tolerances. Total simulation time for pre-labour was seven hours and simulations ended at 4.50 cm dilation diameter and 2.25 cm effacement. Results Three spring configurations were tested: one pin joint, one sliding joint and combined pin-joint-sliding-joint. Feedback, based on dilation speed modulated the spring values, permitting controlled dilation. Dilation diameter speed was maintained at 0.692 cm·hr-1 over the majority of the simulation time. In the sliding-joint-only mode the maximum spring constant value was 23800 N·m-1. In pin-joint-only the maximum spring constant value was 0.41 N·m·rad-1. With a sliding-joint-pin-joint pair the maximum spring constants are 2000 N·m-1 and 0.41 N·m·rad-1, respectively. Conclusions The model, a simplified one-quarter version of the cervix, is capable of maintaining near-constant dilation rates, similar to published clinical observations for pre-labour. Lowest spring constant values are achieved when two springs are used, but nearly identical tracking of dilation speed can be achieved with only a pin joint spring. Initial and final values for effacement and dilation also match published clinical observations. These results provide a framework for development of electro-mechanical phantoms for induction training, as well as dilator testing and development.