Journal: Big Data

Volume 1, Issue 4

191 -- 192Edd Dumbill. The End of Data, and Its Beginning
193 -- 0Gregory Piatetsky-Shapiro. An Interview with the Authors of Big Data"
194 -- 0Abe Gong. Comment on "Data Science and its Relationship to Big Data and Data-Driven Decision Making"
195 -- 0Edd Dumbill, Eugene Kolker. Introducing a Metadata Checklist for Omics Data
196 -- 201Eugene Kolker, Vural Özdemir, Lennart Martens, William Hancock, Gordon A. Anderson, Nathaniel Anderson, Sukru Aynacioglu, Ancha V. Baranova, Shawn R. Campagna, Rui Chen, John Choiniere, Stephen P. Dearth, Wu-chun Feng, Lynnette Ferguson, Geoffrey C. Fox, Dmitrij Frishman, Robert Grossman, Allison P. Heath, Roger Higdon, Mara H. Hutz, Imre Janko, Lihua Jiang, Sanjay Joshi, Alexander Kel, Joseph W. Kemnitz, Isaac S. Kohane, Natali Kolker, Doron Lancet, Elaine Lee, Weizhong Li, Andrey Lisitsa, Adrian Llerena, Courtney MacNealy-Koch, Jean-Claude Marshall, Paola Masuzzo, Amanda May, George Mias, Matthew E. Monroe, Elizabeth Montague, Sean Mooney, Alexey I. Nesvizhskii, Santosh Noronha, Gilbert S. Omenn, Harsha Rajasimha, Preveen Ramamoorthy, Jerry Sheehan, Larry Smarr, Charles V. Smith, Todd Smith, Michael Snyder, Srikanth Rapole, Sanjeeva Srivastava, Larissa Stanberry, Elizabeth Stewart, Stefano Toppo, Peter Uetz, Kenneth Verheggen, Brynn H. Voy, Louise Warnich, Steven W. Wilhelm, Gregory Yandl. Toward More Transparent and Reproducible Omics Studies Through a Common Metadata Checklist and Data Publications
202 -- 206Michael Snyder, George Mias, Larissa Stanberry, Eugene Kolker. Proteomics and Metabolomics Experiments
207 -- 214Vijay Srinivas Agneeswaran, Pranay Tonpay, Jayati Tiwary. Paradigms for Realizing Machine Learning Algorithms
215 -- 226Enric Junqué de Fortuny, David Martens, Foster J. Provost. Is Bigger Really Better?
227 -- 236Élénie Godzaridis, Sébastien Boisvert, Fangfang Xia, Mikhail Kandel, Steve Behling, Bill Long, Carlos P. Sosa, François Laviolette, Jacques Corbeil. Human Analysts at Superhuman Scales: What Has Friendly Software To Do?
237 -- 244Roger Higdon, Elizabeth Stewart, Jared C. Roach, Caroline Dombrowski, Larissa Stanberry, Holly Clifton, Natali Kolker, Gerald van Belle, Mark A. Del Beccaro, Eugene Kolker. Medications as a Predictor of Medical Complexity
245 -- 251Lauren E. Sweet, Heather Lea Moulaison. Electronic Health Records Data and Metadata: Challenges for Big Data in the United States

Volume 1, Issue 3

115 -- 116Edd Dumbill, Sophie Mohin. Opportunities at the Intersection of Health and Data
117 -- 123Gina Neff. Why Big Data Won't Cure Us
124 -- 129Salvatore Iaconesi. La Cura, An Open Source Cure for Cancer
130 -- 133Kim Rees, Dino Citraro. When the Battle Doesn't End at Home
134 -- 136Edd Dumbill. Big Data in Aging Research: An Interview with Aubrey de Grey
137 -- 140K. Krasnow Waterman, Jim Hendler. Getting the Dirt on Big Data
141 -- 151Ajit Narayanan, Michael Greco, Helen Powell, Louise Coleman. The Reliability of Big "Patient Satisfaction" Data
152 -- 159Paul S. Bradley. Implications of Big Data Analytics on Population Health Management
160 -- 167Shawndra Hill, Raina M. Merchant, Lyle Ungar. Lessons Learned About Public Health from Online Crowd Surveillance
168 -- 175Meredith A. Barrett, Olivier Humblet, Robert Hiatt, Nancy E. Adler. From Quantified Self to Quantified Communities
176 -- 182Vijay Srinivas Agneeswaran, Joydeb Mukherjee, Ashutosh Gupta, Pranay Tonpay, Jayati Tiwari, Nitin Agarwal. Real-Time Analytics for the Healthcare Industry: Arrhythmia Detection
183 -- 186Meghan F. Coakley, Maarten R. Leerkes, Jason Barnett, Andrei E. Gabrielian, Karlynn Noble, Nick Weber, Yentram Huyen. Unlocking the Power of Big Data at the National Institutes of Health
187 -- 190Elizabeth Stewart, Todd Smith, Andrea De Souza, Jack Faris, Lennart Martens, Sophie Mohin, Vural Özdemir, Courtney MacNealy-Koch, Eugene Kolker. Delsa Workshop IV: Launching the Quantified Human Initiative

Volume 1, Issue 2

71 -- 72Edd Dumbill. Big Data is Rocket Fuel
73 -- 77Edd Dumbill. Big Data
78 -- 81Dino Citraro. Expanding Real-Time Data Insight at PARC
82 -- 84Jim Hendler. Peta Vs. Meta
85 -- 99Melanie Swan. The Quantified Self: Fundamental Disruption in Big Data Science and Biological Discovery
100 -- 104Michael Hausenblas, Jacques Nadeau. Apache Drill: Interactive Ad-Hoc Analysis at Scale
105 -- 109Michael Gold, Ryan McClarren, Conor Gaughan. The Lessons Oscar Taught Us: Data Science and Media & Entertainment
110 -- 112Brian Dalessandro. Bring the Noise: Embracing Randomness Is the Key to Scaling Up Machine Learning Algorithms

Volume 1, Issue 1

1 -- 2Edd Dumbill. Making Sense of Big Data
3 -- 4Robert Kirkpatrick. Big Data for Development
5 -- 9Edd Dumbill. The Human Face of Big Data: An Interview with Rick Smolan
10 -- 13Edd Dumbill. Big Data and Thought Crime: An Interview with Jim Adler
14 -- 17Dino Citraro. On Visualization
18 -- 20Jim Hendler. Broad Data: Exploring the Emerging Web of Data
21 -- 27Edd Dumbill, Elizabeth D. Liddy, Jeffrey M. Stanton, Kate Mueller, Shelly Farnham. Educating the Next Generation of Data Scientists
28 -- 37Jimmy Lin. Mapreduce is Good Enough?If All You Have is a Hammer, Throw Away Everything That's Not a Nail!
38 -- 41Bob DuCharme. What Do RDF and SPARQL bring to Big Data Projects?
42 -- 50Roger Higdon, Winston Haynes, Larissa Stanberry, Elizabeth Stewart, Gregory Yandl, Chris Howard, William Broomall, Natali Kolker, Eugene Kolker. Unraveling the Complexities of Life Sciences Data
51 -- 59Foster J. Provost, Tom Fawcett. Data Science and its Relationship to Big Data and Data-Driven Decision Making
60 -- 64Chaitanya K. Baru, Milind A. Bhandarkar, Raghunath Nambiar, Meikel Poess, Tilmann Rabl. Benchmarking Big Data Systems and the BigData Top100 List
65 -- 70Daniel Tunkelang, Robert Capra, Gene Golovchinsky, Bill Kules, Catherine L. Smith, Ryen White. Symposium on Human-Computer Information Retrieval