- Kashif Shaheed, Aihua Mao, Imran Qureshi, Munish Kumar, Sumaira Hussain, Xingming Zhang. Recent advancements in finger vein recognition technology: Methodology, challenges and opportunities. Information Fusion, 79:84-109, 2022.
- S. El Hajjar, Fadi Dornaika, Fahed Abdallah. Multi-view spectral clustering via constrained nonnegative embedding. Information Fusion, 78:209-217, 2022.
- Javier Huertas-Tato, Alejandro Martín, Julian Fiérrez, David Camacho. Fusing CNNs and statistical indicators to improve image classification. Information Fusion, 79:174-187, 2022.
- Manuel López Martín, Antonio Sánchez-Esguevillas, Juan Ignacio Arribas, Belén Carro. Supervised contrastive learning over prototype-label embeddings for network intrusion detection. Information Fusion, 79:200-228, 2022.
- Xiang-yu Zhong, Xuanhua Xu, Bin Pan. A non-threshold consensus model based on the minimum cost and maximum consensus-increasing for multi-attribute large group decision-making. Information Fusion, 77:90-106, 2022.
- Xinya Wang, Jiayi Ma 0001, Peng Yi 0002, Xin Tian 0006, Junjun Jiang, Xiao-Ping Zhang 0002. Learning an epipolar shift compensation for light field image super-resolution. Information Fusion, 79:188-199, 2022.
- Natalia Díaz Rodríguez, Alberto Lamas 0001, Jules Sanchez, Gianni Franchi, Ivan Donadello, Siham Tabik, David Filliat, Policarpo Cruz, Rosana Montes, Francisco Herrera. X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: The MonuMAI cultural heritage use case. Information Fusion, 79:58-83, 2022.
- Shagun Uppal, Sarthak Bhagat, Devamanyu Hazarika, Navonil Majumder, Soujanya Poria, Roger Zimmermann, Amir Zadeh 0001. Multimodal research in vision and language: A review of current and emerging trends. Information Fusion, 77:149-171, 2022.
- Guang Yang 0006, Qinghao Ye, Jun Xia. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond. Information Fusion, 77:29-52, 2022.
- Jürgen Dieber, Sabrina Kirrane. A novel model usability evaluation framework (MUsE) for explainable artificial intelligence. Information Fusion, 81:143-153, 2022.