Abstract is missing.
- Kernel Mean Estimation via Spectral FilteringKrikamol Muandet, Bharath K. Sriperumbudur, Bernhard Schölkopf. 1-9 [doi]
- Semi-Separable Hamiltonian Monte Carlo for Inference in Bayesian Hierarchical ModelsYichuan Zhang, Charles A. Sutton. 10-18 [doi]
- Communication Efficient Distributed Machine Learning with the Parameter ServerMu Li, David G. Andersen, Alex J. Smola, Kai Yu. 19-27 [doi]
- The Infinite Mixture of Infinite Gaussian MixturesHalid Ziya Yerebakan, Bartek Rajwa, Murat Dundar. 28-36 [doi]
- Robust Classification Under Sample Selection BiasAnqi Liu, Brian D. Ziebart. 37-45 [doi]
- Zeta Hull Pursuits: Learning Nonconvex Data HullsYuanjun Xiong, Wei Liu, Deli Zhao, Xiaoou Tang. 46-54 [doi]
- Grouping-Based Low-Rank Trajectory Completion and 3D ReconstructionKaterina Fragkiadaki, Marta Salas, Pablo Andrés Arbelaez, Jitendra Malik. 55-63 [doi]
- Sparse Space-Time Deconvolution for Calcium Image AnalysisFerran Diego Andilla, Fred A. Hamprecht. 64-72 [doi]
- Restricted Boltzmann machines modeling human choiceTakayuki Osogami, Makoto Otsuka. 73-81 [doi]
- Multiscale Fields of PatternsPedro F. Felzenszwalb, John G. Oberlin. 82-90 [doi]
- large scale canonical correlation analysis with iterative least squaresYichao Lu, Dean P. Foster. 91-99 [doi]
- Altitude Training: Strong Bounds for Single-Layer DropoutStefan Wager, William Fithian, Sida I. Wang, Percy Liang. 100-108 [doi]
- Rounding-based Moves for Metric LabelingM. Pawan Kumar. 109-117 [doi]
- Parallel Double Greedy Submodular MaximizationXinghao Pan, Stefanie Jegelka, Joseph E. Gonzalez, Joseph K. Bradley, Michael I. Jordan. 118-126 [doi]
- Multivariate Regression with CalibrationHan Liu, Lie Wang, Tuo Zhao. 127-135 [doi]
- Exact Post Model Selection Inference for Marginal ScreeningJason D. Lee, Jonathan E. Taylor. 136-144 [doi]
- On a Theory of Nonparametric Pairwise Similarity for Clustering: Connecting Clustering to ClassificationYingzhen Yang, Feng Liang, Shuicheng Yan, Zhangyang Wang, Thomas S. Huang. 145-153 [doi]
- Just-In-Time Learning for Fast and Flexible InferenceS. M. Ali Eslami, Daniel Tarlow, Pushmeet Kohli, John M. Winn. 154-162 [doi]
- Fundamental Limits of Online and Distributed Algorithms for Statistical Learning and EstimationOhad Shamir. 163-171 [doi]
- Quantized Kernel Learning for Feature MatchingDanfeng Qin, Xuanli Chen, Matthieu Guillaumin, Luc J. Van Gool. 172-180 [doi]
- Parallel Direction Method of MultipliersHuahua Wang, Arindam Banerjee, Zhi-Quan Luo. 181-189 [doi]
- (Almost) No Label No CryGiorgio Patrini, Richard Nock, Tiberio Caetano, Paul Rivera. 190-198 [doi]
- Stochastic Multi-Armed-Bandit Problem with Non-stationary RewardsYonatan Gur, Assaf J. Zeevi, Omar Besbes. 199-207 [doi]
- Object Localization based on Structural SVM using Privileged InformationJan Feyereisl, Suha Kwak, Jeany Son, Bohyung Han. 208-216 [doi]
- Multi-View Perceptron: a Deep Model for Learning Face Identity and View RepresentationsZhenyao Zhu, Ping Luo, Xiaogang Wang, Xiaoou Tang. 217-225 [doi]
- Shape and Illumination from Shading using the Generic Viewpoint AssumptionDaniel Zoran, Dilip Krishnan, José Bento, Bill Freeman. 226-234 [doi]
- Parallel Sampling of HDPs using Sub-Cluster SplitsJason Chang, John W. Fisher III. 235-243 [doi]
- From MAP to Marginals: Variational Inference in Bayesian Submodular ModelsJosip Djolonga, Andreas Krause. 244-252 [doi]
- Robust Logistic Regression and ClassificationJiashi Feng, Huan Xu, Shie Mannor, Shuicheng Yan. 253-261 [doi]
- Extracting Certainty from Uncertainty: Transductive Pairwise Classification from Pairwise SimilaritiesTianbao Yang, Rong Jin. 262-270 [doi]
- A Unified Semantic Embedding: Relating Taxonomies and AttributesSung Ju Hwang, Leonid Sigal. 271-279 [doi]
- Transportability from Multiple Environments with Limited Experiments: Completeness ResultsElias Bareinboim, Judea Pearl. 280-288 [doi]
- Augmentative Message Passing for Traveling Salesman Problem and Graph PartitioningSiamak Ravanbakhsh, Reihaneh Rabbany, Russell Greiner. 289-297 [doi]
- Causal Inference through a Witness Protection ProgramRicardo Silva, Robin Evans. 298-306 [doi]
- Incremental Clustering: The Case for Extra ClustersMargareta Ackerman, Sanjoy Dasgupta. 307-315 [doi]
- Multi-scale Graphical Models for Spatio-Temporal ProcessesFirdaus Janoos, Huseyin Denli, Niranjan A. Subrahmanya. 316-324 [doi]
- Iterative Neural Autoregressive Distribution Estimator NADE-kTapani Raiko, Yao Li, KyungHyun Cho, Yoshua Bengio. 325-333 [doi]
- Sparse PCA via Covariance ThresholdingYash Deshpande, Andrea Montanari. 334-342 [doi]
- Low-dimensional models of neural population activity in sensory cortical circuitsEvan W. Archer, Urs Köster, Jonathan W. Pillow, Jakob H. Macke. 343-351 [doi]
- A Synaptical Story of Persistent Activity with Graded Lifetime in a Neural SystemYuanyuan Mi, Luozheng Li, Dahui Wang, Si Wu. 352-360 [doi]
- A Representation Theory for Ranking FunctionsHarsh H. Pareek, Pradeep K. Ravikumar. 361-369 [doi]
- Near-optimal sample compression for nearest neighborsLee-Ad Gottlieb, Aryeh Kontorovich, Pinhas Nisnevitch. 370-378 [doi]
- Combinatorial Pure Exploration of Multi-Armed BanditsShouyuan Chen, Tian Lin, Irwin King, Michael R. Lyu, Wei Chen. 379-387 [doi]
- Log-Hilbert-Schmidt metric between positive definite operators on Hilbert spacesMinh Ha Quang, Marco San-Biagio, Vittorio Murino. 388-396 [doi]
- Consistency of Spectral Partitioning of Uniform Hypergraphs under Planted Partition ModelDebarghya Ghoshdastidar, Ambedkar Dukkipati. 397-405 [doi]
- Spectral Clustering of graphs with the Bethe HessianAlaa Saade, Florent Krzakala, Lenka Zdeborová. 406-414 [doi]
- Fast and Robust Least Squares Estimation in Corrupted Linear ModelsBrian McWilliams, Gabriel Krummenacher, Mario Lucic, Joachim M. Buhmann. 415-423 [doi]
- Local Decorrelation For Improved Pedestrian DetectionWoonhyun Nam, Piotr Dollár, Joon Hee Han. 424-432 [doi]
- Robust Kernel Density Estimation by Scaling and Projection in Hilbert SpaceRobert A. Vandermeulen, Clayton Scott. 433-441 [doi]
- Beyond Disagreement-Based Agnostic Active LearningChicheng Zhang, Kamalika Chaudhuri. 442-450 [doi]
- Bayes-Adaptive Simulation-based Search with Value Function ApproximationArthur Guez, Nicolas Heess, David Silver, Peter Dayan. 451-459 [doi]
- A State-Space Model for Decoding Auditory Attentional Modulation from MEG in a Competing-Speaker EnvironmentSahar Akram, Jonathan Z. Simon, Shihab A. Shamma, Behtash Babadi. 460-468 [doi]
- Active Regression by StratificationSivan Sabato, Rémi Munos. 469-477 [doi]
- Sensory Integration and Density EstimationJoseph G. Makin, Philip N. Sabes. 478-486 [doi]
- Learning Deep Features for Scene Recognition using Places DatabaseBolei Zhou, Àgata Lapedriza, Jianxiong Xiao, Antonio Torralba, Aude Oliva. 487-495 [doi]
- A Complete Variational TrackerRyan D. Turner, Steven Bottone, Bhargav Avasarala. 496-504 [doi]
- Spike Frequency Adaptation Implements Anticipative Tracking in Continuous Attractor Neural NetworksYuanyuan Mi, C. C. Alan Fung, K. Y. Michael Wong, Si Wu. 505-513 [doi]
- Efficient Sampling for Learning Sparse Additive Models in High DimensionsHemant Tyagi, Bernd Gärtner, Andreas Krause. 514-522 [doi]
- Deep Joint Task Learning for Generic Object ExtractionXiaolong Wang, Liliang Zhang, Liang Lin, Zhujin Liang, Wangmeng Zuo. 523-531 [doi]
- Robust Bayesian Max-Margin ClusteringChangyou Chen, Jun Zhu, Xinhua Zhang. 532-540 [doi]
- Permutation Diffusion Maps (PDM) with Application to the Image Association Problem in Computer VisionDeepti Pachauri, Risi Kondor, Gautam Sargur, Vikas Singh. 541-549 [doi]
- Bounded Regret for Finite-Armed Structured BanditsTor Lattimore, Rémi Munos. 550-558 [doi]
- Coresets for k-Segmentation of Streaming DataGuy Rosman, Mikhail V. Volkov, Dan Feldman, John W. Fisher III, Daniela Rus. 559-567 [doi]
- Two-Stream Convolutional Networks for Action Recognition in VideosKaren Simonyan, Andrew Zisserman. 568-576 [doi]
- Discovering Structure in High-Dimensional Data Through Correlation ExplanationGreg Ver Steeg, Aram Galstyan. 577-585 [doi]
- Positive Curvature and Hamiltonian Monte CarloChristof Seiler, Simon Rubinstein-Salzedo, Susan Holmes. 586-594 [doi]
- Learning Mixed Multinomial Logit Model from Ordinal DataSewoong Oh, Devavrat Shah. 595-603 [doi]
- Near-optimal Reinforcement Learning in Factored MDPsIan Osband, Benjamin Van Roy. 604-612 [doi]
- Efficient learning by implicit exploration in bandit problems with side observationsTomás Kocák, Gergely Neu, Michal Valko, Rémi Munos. 613-621 [doi]
- Repeated Contextual Auctions with Strategic BuyersKareem Amin, Afshin Rostamizadeh, Umar Syed. 622-630 [doi]
- Recursive Inversion Models for PermutationsChristopher Meek, Marina Meila. 631-639 [doi]
- On the Convergence Rate of Decomposable Submodular Function MinimizationRobert Nishihara, Stefanie Jegelka, Michael I. Jordan. 640-648 [doi]
- New Rules for Domain Independent Lifted MAP InferenceHappy Mittal, Prasoon Goyal, Vibhav G. Gogate, Parag Singla. 649-657 [doi]
- PAC-Bayesian AUC classification and scoringJames Ridgway, Pierre Alquier, Nicolas Chopin, Feng Liang. 658-666 [doi]
- Optimization Methods for Sparse Pseudo-Likelihood Graphical Model SelectionSang Oh, Onkar Dalal, Kshitij Khare, Bala Rajaratnam. 667-675 [doi]
- On Prior Distributions and Approximate Inference for Structured VariablesOluwasanmi O. Koyejo, Rajiv Khanna, Joydeep Ghosh, Russell A. Poldrack. 676-684 [doi]
- On Iterative Hard Thresholding Methods for High-dimensional M-EstimationPrateek Jain 0002, Ambuj Tewari, Purushottam Kar. 685-693 [doi]
- Online and Stochastic Gradient Methods for Non-decomposable Loss FunctionsPurushottam Kar, Harikrishna Narasimhan, Prateek Jain 0002. 694-702 [doi]
- Analysis of Learning from Positive and Unlabeled DataMarthinus Christoffel du Plessis, Gang Niu, Masashi Sugiyama. 703-711 [doi]
- Dimensionality Reduction with Subspace Structure PreservationDevansh Arpit, Ifeoma Nwogu, Venu Govindaraju. 712-720 [doi]
- Constrained convex minimization via model-based excessive gapQuoc Tran-Dinh, Volkan Cevher. 721-729 [doi]
- Poisson Process Jumping between an Unknown Number of Rates: Application to Neural Spike DataFlorian Stimberg, Andreas Ruttor, Manfred Opper. 730-738 [doi]
- Probabilistic ODE Solvers with Runge-Kutta MeansMichael Schober, David K. Duvenaud, Philipp Hennig. 739-747 [doi]
- Optimal decision-making with time-varying evidence reliabilityJan Drugowitsch, Rubén Moreno-Bote, Alexandre Pouget. 748-756 [doi]
- Learning Shuffle Ideals Under Restricted DistributionsDongqu Chen. 757-765 [doi]
- Discriminative Unsupervised Feature Learning with Convolutional Neural NetworksAlexey Dosovitskiy, Jost Tobias Springenberg, Martin A. Riedmiller, Thomas Brox. 766-774 [doi]
- Distance-Based Network Recovery under Feature CorrelationDavid Adametz, Volker Roth. 775-783 [doi]
- Bandit Convex Optimization: Towards Tight BoundsElad Hazan, Kfir Y. Levy. 784-792 [doi]
- Projective dictionary pair learning for pattern classificationShuhang Gu, Lei Zhang, Wangmeng Zuo, Xiangchu Feng. 793-801 [doi]
- Provable Submodular Minimization using Wolfe's AlgorithmDeeparnab Chakrabarty, Prateek Jain 0002, Pravesh Kothari. 802-809 [doi]
- Exploiting easy data in online optimizationAmir Sani, Gergely Neu, Alessandro Lazaric. 810-818 [doi]
- Sparse Multi-Task Reinforcement LearningDaniele Calandriello, Alessandro Lazaric, Marcello Restelli. 819-827 [doi]
- Best-Arm Identification in Linear BanditsMarta Soare, Alessandro Lazaric, Rémi Munos. 828-836 [doi]
- Mind the Nuisance: Gaussian Process Classification using Privileged NoiseDaniel Hernández-Lobato, Viktoriia Sharmanska, Kristian Kersting, Christoph H. Lampert, Novi Quadrianto. 837-845 [doi]
- Tight Bounds for Influence in Diffusion Networks and Application to Bond Percolation and EpidemiologyRémi Lemonnier, Kevin Scaman, Nicolas Vayatis. 846-854 [doi]
- On the Computational Efficiency of Training Neural NetworksRoi Livni, Shai Shalev-Shwartz, Ohad Shamir. 855-863 [doi]
- Self-Adaptable Templates for Feature CodingXavier Boix, Gemma Roig, Salomon Diether, Luc Van Gool. 864-872 [doi]
- Multilabel Structured Output Learning with Random Spanning Trees of Max-Margin Markov NetworksMario Marchand, HongYu Su, Emilie Morvant, Juho Rousu, John Shawe-Taylor. 873-881 [doi]
- Stochastic Network Design in Bidirected TreesXiaoJian Wu, Daniel R. Sheldon, Shlomo Zilberstein. 882-890 [doi]
- Learning convolution filters for inverse covariance estimation of neural network connectivityGeorge Mohler. 891-899 [doi]
- SerialRank: Spectral Ranking using SeriationFajwel Fogel, Alexandre d'Aspremont, Milan Vojnovic. 900-908 [doi]
- Clamping Variables and Approximate InferenceAdrian Weller, Tony Jebara. 909-917 [doi]
- Predictive Entropy Search for Efficient Global Optimization of Black-box FunctionsJosé Miguel Hernández-Lobato, Matthew W. Hoffman, Zoubin Ghahramani. 918-926 [doi]
- A Block-Coordinate Descent Approach for Large-scale Sparse Inverse Covariance EstimationEran Treister, Javier Turek. 927-935 [doi]
- Efficient Inference of Continuous Markov Random Fields with Polynomial PotentialsShenlong Wang, Alexander G. Schwing, Raquel Urtasun. 936-944 [doi]
- Scalable Methods for Nonnegative Matrix Factorizations of Near-separable Tall-and-skinny MatricesAustin R. Benson, Jason D. Lee, Bartek Rajwa, David F. Gleich. 945-953 [doi]
- Inferring synaptic conductances from spike trains with a biophysically inspired point process modelKenneth W. Latimer, E. J. Chichilnisky, Fred Rieke, Jonathan W. Pillow. 954-962 [doi]
- Expectation Backpropagation: Parameter-Free Training of Multilayer Neural Networks with Continuous or Discrete WeightsDaniel Soudry, Itay Hubara, Ron Meir. 963-971 [doi]
- Incremental Local Gaussian RegressionFranziska Meier, Philipp Hennig, Stefan Schaal. 972-980 [doi]
- General Table Completion using a Bayesian Nonparametric ModelIsabel Valera, Zoubin Ghahramani. 981-989 [doi]
- Universal Option ModelsHengshuai Yao, Csaba Szepesvári, Richard S. Sutton, Joseph Modayil, Shalabh Bhatnagar. 990-998 [doi]
- Approximating Hierarchical MV-sets for Hierarchical ClusteringAssaf Glazer, Omer Weissbrod, Michael Lindenbaum, Shaul Markovitch. 999-1007 [doi]
- Constant Nullspace Strong Convexity and Fast Convergence of Proximal Methods under High-Dimensional SettingsEn-Hsu Yen, Cho-Jui Hsieh, Pradeep K. Ravikumar, Inderjit S. Dhillon. 1008-1016 [doi]
- Stochastic Gradient Descent, Weighted Sampling, and the Randomized Kaczmarz algorithmDeanna Needell, Rachel Ward, Nathan Srebro. 1017-1025 [doi]
- A Framework for Testing Identifiability of Bayesian Models of PerceptionLuigi Acerbi, Wei Ji Ma, Sethu Vijayakumar. 1026-1034 [doi]
- Optimistic Planning in Markov Decision Processes Using a Generative ModelBalázs Szörényi, Gunnar Kedenburg, Rémi Munos. 1035-1043 [doi]
- Gaussian Process Volatility ModelYue Wu, José Miguel Hernández-Lobato, Zoubin Ghahramani. 1044-1052 [doi]
- A Safe Screening Rule for Sparse Logistic RegressionJie Wang, Jiayu Zhou, Jun Liu, Peter Wonka, Jieping Ye. 1053-1061 [doi]
- Hardness of parameter estimation in graphical modelsGuy Bresler, David Gamarnik, Devavrat Shah. 1062-1070 [doi]
- Learning Neural Network Policies with Guided Policy Search under Unknown DynamicsSergey Levine, Pieter Abbeel. 1071-1079 [doi]
- Magnitude-sensitive preference formation`Nisheeth Srivastava, Ed Vul, Paul R. Schrater. 1080-1088 [doi]
- Extreme banditsAlexandra Carpentier, Michal Valko. 1089-1097 [doi]
- Distributed Estimation, Information Loss and Exponential FamiliesQiang Liu, Alexander T. Ihler. 1098-1106 [doi]
- Non-convex Robust PCAPraneeth Netrapalli, Niranjan U. N, Sujay Sanghavi, Animashree Anandkumar, Prateek Jain 0002. 1107-1115 [doi]
- Simultaneous Model Selection and Optimization through Parameter-free Stochastic LearningFrancesco Orabona. 1116-1124 [doi]
- Learning From Weakly Supervised Data by The Expectation Loss SVM (e-SVM) algorithmJun Zhu, Junhua Mao, Alan L. Yuille. 1125-1133 [doi]
- Message Passing Inference for Large Scale Graphical Models with High Order PotentialsJian Zhang, Alexander G. Schwing, Raquel Urtasun. 1134-1142 [doi]
- Encoding High Dimensional Local Features by Sparse Coding Based Fisher VectorsLingqiao Liu, Chunhua Shen, Lei Wang, Anton van den Hengel, Chao Wang. 1143-1151 [doi]
- Dependent nonparametric trees for dynamic hierarchical clusteringKumar Dubey, Qirong Ho, Sinead A. Williamson, Eric P. Xing. 1152-1160 [doi]
- Causal Strategic Inference in Networked Microfinance EconomiesMohammad Tanvir Irfan, Luis E. Ortiz. 1161-1169 [doi]
- Learning Multiple Tasks in Parallel with a Shared AnnotatorHaim Cohen, Koby Crammer. 1170-1178 [doi]
- Reducing the Rank in Relational Factorization Models by Including Observable PatternsMaximilian Nickel, Xueyan Jiang, Volker Tresp. 1179-1187 [doi]
- Clustering from Labels and Time-Varying GraphsShiau Hong Lim, Yudong Chen, Huan Xu. 1188-1196 [doi]
- From Stochastic Mixability to Fast RatesNishant A. Mehta, Robert C. Williamson. 1197-1205 [doi]
- Recovery of Coherent Data via Low-Rank Dictionary PursuitGuangcan Liu, Ping Li 0001. 1206-1214 [doi]
- Inferring sparse representations of continuous signals with continuous orthogonal matching pursuitKarin C. Knudson, Jacob Yates, Alexander Huk, Jonathan W. Pillow. 1215-1223 [doi]
- Analysis of Variational Bayesian Latent Dirichlet Allocation: Weaker Sparsity Than MAPShinichi Nakajima, Issei Sato, Masashi Sugiyama, Kazuho Watanabe, Hiroko Kobayashi. 1224-1232 [doi]
- Discovering, Learning and Exploiting RelevanceCem Tekin, Mihaela van der Schaar. 1233-1241 [doi]
- Divide-and-Conquer Learning by Anchoring a Conical HullTianyi Zhou, Jeff A. Bilmes, Carlos Guestrin. 1242-1250 [doi]
- Extended and Unscented Gaussian ProcessesDaniel M. Steinberg, Edwin V. Bonilla. 1251-1259 [doi]
- Spectral Methods meet EM: A Provably Optimal Algorithm for CrowdsourcingYuchen Zhang, Xi Chen, Dengyong Zhou, Michael I. Jordan. 1260-1268 [doi]
- Exploiting Linear Structure Within Convolutional Networks for Efficient EvaluationEmily L. Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, Rob Fergus. 1269-1277 [doi]
- Learning to Discover Efficient Mathematical IdentitiesWojciech Zaremba, Karol Kurach, Rob Fergus. 1278-1286 [doi]
- The Large Margin Mechanism for Differentially Private MaximizationKamalika Chaudhuri, Daniel Hsu, Shuang Song. 1287-1295 [doi]
- DFacTo: Distributed Factorization of TensorsJoon Hee Choi, S. Vishwanathan. 1296-1304 [doi]
- Localized Data Fusion for Kernel k-Means Clustering with Application to Cancer BiologyMehmet Gönen, Adam A. Margolin. 1305-1313 [doi]
- Conditional Swap Regret and Conditional Correlated EquilibriumMehryar Mohri, Scott Yang. 1314-1322 [doi]
- Mode Estimation for High Dimensional Discrete Tree Graphical ModelsChao Chen, Han Liu, Dimitris Metaxas, Tianqi Zhao. 1323-1331 [doi]
- Large-scale L-BFGS using MapReduceWeizhu Chen, Zhenghao Wang, Jingren Zhou. 1332-1340 [doi]
- Submodular Attribute Selection for Action Recognition in VideoJingjing Zheng, Zhuolin Jiang, Rama Chellappa, P. Jonathon Phillips. 1341-1349 [doi]
- Efficient Structured Matrix Rank MinimizationAdams Wei Yu, Wanli Ma, Yaoliang Yu, Jaime G. Carbonell, Suvrit Sra. 1350-1358 [doi]
- On Integrated Clustering and Outlier DetectionLionel Ott, Linsey Xiaolin Pang, Fabio Tozeto Ramos, Sanjay Chawla. 1359-1367 [doi]
- A Drifting-Games Analysis for Online Learning and Applications to BoostingHaipeng Luo, Robert E. Schapire. 1368-1376 [doi]
- Projecting Markov Random Field Parameters for Fast MixingXianghang Liu, Justin Domke. 1377-1385 [doi]
- Automatic Discovery of Cognitive Skills to Improve the Prediction of Student LearningRobert V. Lindsey, Mohammad Khajah, Michael C. Mozer. 1386-1394 [doi]
- Near-Optimal-Sample Estimators for Spherical Gaussian MixturesAnanda Theertha Suresh, Alon Orlitsky, Jayadev Acharya, Ashkan Jafarpour. 1395-1403 [doi]
- Automated Variational Inference for Gaussian Process ModelsTrung V. Nguyen, Edwin V. Bonilla. 1404-1412 [doi]
- Learning Mixtures of Submodular Functions for Image Collection SummarizationSebastian Tschiatschek, Rishabh K. Iyer, Haochen Wei, Jeff A. Bilmes. 1413-1421 [doi]
- Robust Tensor Decomposition with Gross CorruptionQuanquan Gu, Huan Gui, Jiawei Han. 1422-1430 [doi]
- Provable Tensor Factorization with Missing DataPrateek Jain 0002, Sewoong Oh. 1431-1439 [doi]
- Parallel Successive Convex Approximation for Nonsmooth Nonconvex OptimizationMeisam Razaviyayn, Mingyi Hong, Zhi-Quan Luo, Jong-Shi Pang. 1440-1448 [doi]
- Using Convolutional Neural Networks to Recognize Rhythm Stimuli from Electroencephalography RecordingsSebastian Stober, Daniel J. Cameron, Jessica A. Grahn. 1449-1457 [doi]
- Blossom Tree Graphical ModelsZhe Liu, John D. Lafferty. 1458-1465 [doi]
- Model-based Reinforcement Learning and the Eluder DimensionIan Osband, Benjamin Van Roy. 1466-1474 [doi]
- Minimax-optimal Inference from Partial RankingsBruce E. Hajek, Sewoong Oh, Jiaming Xu. 1475-1483 [doi]
- Spectral Methods for Indian Buffet Process InferenceHsiao-Yu Tung, Alex J. Smola. 1484-1492 [doi]
- On the Statistical Consistency of Plug-in Classifiers for Non-decomposable Performance MeasuresHarikrishna Narasimhan, Rohit Vaish, Shivani Agarwal 0001. 1493-1501 [doi]
- Top Rank Optimization in Linear TimeNan Li, Rong Jin, Zhi-Hua Zhou. 1502-1510 [doi]
- Spectral Methods for Supervised Topic ModelsYining Wang, Jun Zhu. 1511-1519 [doi]
- Graphical Models for Recovering Probabilistic and Causal Queries from Missing DataKarthika Mohan, Judea Pearl. 1520-1528 [doi]
- Sparse PCA with Oracle PropertyQuanquan Gu, Zhaoran Wang, Han Liu. 1529-1537 [doi]
- Unsupervised Transcription of Piano MusicTaylor Berg-Kirkpatrick, Jacob Andreas, Dan Klein. 1538-1546 [doi]
- Decoupled Variational Gaussian InferenceMohammad E. Khan. 1547-1555 [doi]
- Estimation with Norm RegularizationArindam Banerjee, Sheng Chen, Farideh Fazayeli, Vidyashankar Sivakumar. 1556-1564 [doi]
- Decomposing Parameter Estimation ProblemsKhaled S. Refaat, Arthur Choi, Adnan Darwiche. 1565-1573 [doi]
- Stochastic Proximal Gradient Descent with Acceleration TechniquesAtsushi Nitanda. 1574-1582 [doi]
- Learning to Optimize via Information-Directed SamplingDaniel Russo, Benjamin Van Roy. 1583-1591 [doi]
- Covariance shrinkage for autocorrelated dataDaniel Bartz, Klaus-Robert Müller. 1592-1600 [doi]
- Do Convnets Learn Correspondence?Jonathan Long, Ning Zhang, Trevor Darrell. 1601-1609 [doi]
- The Blinded Bandit: Learning with Adaptive FeedbackOfer Dekel, Elad Hazan, Tomer Koren. 1610-1618 [doi]
- Convex Optimization Procedure for Clustering: Theoretical RevisitChangbo Zhu, Huan Xu, Chenlei Leng, Shuicheng Yan. 1619-1627 [doi]
- Sparse Bayesian structure learning with dependent relevance determination priorsAnqi Wu, Mijung Park, Oluwasanmi O. Koyejo, Jonathan W. Pillow. 1628-1636 [doi]
- Weakly-supervised Discovery of Visual Pattern ConfigurationsHyun Oh Song, Yong Jae Lee, Stefanie Jegelka, Trevor Darrell. 1637-1645 [doi]
- SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite ObjectivesAaron Defazio, Francis R. Bach, Simon Lacoste-Julien. 1646-1654 [doi]
- Exclusive Feature Learning on Arbitrary Structures via \ell_{1, 2}-normDeguang Kong, Ryohei Fujimaki, Ji Liu 0002, Feiping Nie, Chris H. Q. Ding. 1655-1663 [doi]
- Time-Data Tradeoffs by Aggressive SmoothingJohn J. Bruer, Joel A. Tropp, Volkan Cevher, Stephen Becker. 1664-1672 [doi]
- Distributed Power-law Graph Computing: Theoretical and Empirical AnalysisCong Xie, Ling Yan, Wu-Jun Li, Zhihua Zhang. 1673-1681 [doi]
- A Multi-World Approach to Question Answering about Real-World Scenes based on Uncertain InputMateusz Malinowski, Mario Fritz. 1682-1690 [doi]
- Efficient Partial Monitoring with Prior InformationHastagiri P. Vanchinathan, Gábor Bartók, Andreas Krause. 1691-1699 [doi]
- Distributed Parameter Estimation in Probabilistic Graphical ModelsYariv Dror Mizrahi, Misha Denil, Nando de Freitas. 1700-1708 [doi]
- Unsupervised Deep Haar Scattering on GraphsXu Chen, Xiuyuan Cheng, Stéphane Mallat. 1709-1717 [doi]
- Online Optimization for Max-Norm RegularizationJie Shen, Huan Xu, Ping Li. 1718-1726 [doi]
- Probabilistic low-rank matrix completion on finite alphabetsJean Lafond, Olga Klopp, Eric Moulines, Joseph Salmon. 1727-1735 [doi]
- Articulated Pose Estimation by a Graphical Model with Image Dependent Pairwise RelationsXianjie Chen, Alan L. Yuille. 1736-1744 [doi]
- Bayesian Inference for Structured Spike and Slab PriorsMichael Riis Andersen, Ole Winther, Lars Kai Hansen. 1745-1753 [doi]
- Bayesian Nonlinear Support Vector Machines and Discriminative Factor ModelingRicardo Henao, Xin Yuan, Lawrence Carin. 1754-1762 [doi]
- Generalized Higher-Order Orthogonal Iteration for Tensor Decomposition and CompletionYuanyuan Liu, Fanhua Shang, Wei Fan, James Cheng, Hong Cheng. 1763-1771 [doi]
- Making Pairwise Binary Graphical Models AttractiveNicholas Ruozzi, Tony Jebara. 1772-1780 [doi]
- Low Rank Approximation Lower Bounds in Row-Update StreamsDavid P. Woodruff. 1781-1789 [doi]
- Deep Convolutional Neural Network for Image DeconvolutionLi Xu, Jimmy S. Ren, Ce Liu, Jiaya Jia. 1790-1798 [doi]
- Joint Training of a Convolutional Network and a Graphical Model for Human Pose EstimationJonathan J. Tompson, Arjun Jain, Yann LeCun, Christoph Bregler. 1799-1807 [doi]
- Learning Generative Models with Visual AttentionYichuan Tang, Nitish Srivastava, Ruslan Salakhutdinov. 1808-1816 [doi]
- Metric Learning for Temporal Sequence AlignmentRémi Lajugie, Damien Garreau, Francis R. Bach, Sylvain Arlot. 1817-1825 [doi]
- Learning Optimal Commitment to Overcome InsecurityAvrim Blum, Nika Haghtalab, Ariel D. Procaccia. 1826-1834 [doi]
- How hard is my MDP?" The distribution-norm to the rescue"Odalric-Ambrym Maillard, Timothy Arthur Mann, Shie Mannor. 1835-1843 [doi]
- Near-Optimal Density Estimation in Near-Linear Time Using Variable-Width HistogramsSiu On Chan, Ilias Diakonikolas, Rocco A. Servedio, Xiaorui Sun. 1844-1852 [doi]
- An Autoencoder Approach to Learning Bilingual Word RepresentationsSarath Chandar A. P, Stanislas Lauly, Hugo Larochelle, Mitesh M. Khapra, Balaraman Ravindran, Vikas C. Raykar, Amrita Saha. 1853-1861 [doi]
- Sequential Monte Carlo for Graphical ModelsChristian Andersson Naesseth, Fredrik Lindsten, Thomas B. Schön. 1862-1870 [doi]
- Optimal Regret Minimization in Posted-Price Auctions with Strategic BuyersMehryar Mohri, Andres Muñoz Medina. 1871-1879 [doi]
- Optimal prior-dependent neural population codes under shared input noiseAgnieszka Grabska-Barwinska, Jonathan W. Pillow. 1880-1888 [doi]
- Deep Fragment Embeddings for Bidirectional Image Sentence MappingAndrej Karpathy, Armand Joulin, Fei-Fei Li. 1889-1897 [doi]
- Flexible Transfer Learning under Support and Model ShiftXuezhi Wang, Jeff Schneider. 1898-1906 [doi]
- Probabilistic Differential Dynamic ProgrammingYunpeng Pan, Evangelos Theodorou. 1907-1915 [doi]
- Predicting Useful Neighborhoods for Lazy Local LearningAron Yu, Kristen Grauman. 1916-1924 [doi]
- Modeling Deep Temporal Dependencies with Recurrent Grammar Cells""Vincent Michalski, Roland Memisevic, Kishore Reddy Konda. 1925-1933 [doi]
- Generalized Dantzig Selector: Application to the k-support normSoumyadeep Chatterjee, Sheng Chen, Arindam Banerjee. 1934-1942 [doi]
- Neurons as Monte Carlo Samplers: Bayesian Inference and Learning in Spiking NetworksYanping Huang, Rajesh P. N. Rao. 1943-1951 [doi]
- The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype ClassificationBeen Kim, Cynthia Rudin, Julie A. Shah. 1952-1960 [doi]
- Latent Support Measure Machines for Bag-of-Words Data ClassificationYuya Yoshikawa, Tomoharu Iwata, Hiroshi Sawada. 1961-1969 [doi]
- Local Linear Convergence of Forward-Backward under Partial SmoothnessJingwei Liang, Jalal Fadili, Gabriel Peyré. 1970-1978 [doi]
- RAAM: The Benefits of Robustness in Approximating Aggregated MDPs in Reinforcement LearningMarek Petrik, Dharmashankar Subramanian. 1979-1987 [doi]
- Deep Learning Face Representation by Joint Identification-VerificationYi Sun, Yuheng Chen, Xiaogang Wang, Xiaoou Tang. 1988-1996 [doi]
- A provable SVD-based algorithm for learning topics in dominant admixture corpusTrapit Bansal, Chiranjib Bhattacharyya, Ravindran Kannan. 1997-2005 [doi]
- QUIC & DIRTY: A Quadratic Approximation Approach for Dirty Statistical ModelsCho-Jui Hsieh, Inderjit S. Dhillon, Pradeep K. Ravikumar, Stephen Becker, Peder A. Olsen. 2006-2014 [doi]
- General Stochastic Networks for ClassificationMatthias Zöhrer, Franz Pernkopf. 2015-2023 [doi]
- Spatio-temporal Representations of Uncertainty in Spiking Neural NetworksCristina Savin, Sophie Denève. 2024-2032 [doi]
- Attentional Neural Network: Feature Selection Using Cognitive FeedbackQian Wang, Jiaxing Zhang, Sen Song, Zheng Zhang. 2033-2041 [doi]
- Convolutional Neural Network Architectures for Matching Natural Language SentencesBaotian Hu, Zhengdong Lu, Hang Li, Qingcai Chen. 2042-2050 [doi]
- Scalable Non-linear Learning with Adaptive Polynomial ExpansionsAlekh Agarwal, Alina Beygelzimer, Daniel Hsu, John Langford, Matus J. Telgarsky. 2051-2059 [doi]
- On the relations of LFPs & Neural Spike TrainsDavid E. Carlson, Jana Schaich Borg, Kafui Dzirasa, Lawrence Carin. 2060-2068 [doi]
- Diverse Sequential Subset Selection for Supervised Video SummarizationBoqing Gong, Wei-Lun Chao, Kristen Grauman, Fei Sha. 2069-2077 [doi]
- Self-Paced Learning with DiversityLu Jiang, Deyu Meng, Shoou-I Yu, Zhen-zhong Lan, Shiguang Shan, Alexander G. Hauptmann. 2078-2086 [doi]
- Feature Cross-Substitution in Adversarial ClassificationBo Li, Yevgeniy Vorobeychik. 2087-2095 [doi]
- Deep Recursive Neural Networks for Compositionality in LanguageOzan Irsoy, Claire Cardie. 2096-2104 [doi]
- Inference by Learning: Speeding-up Graphical Model Optimization via a Coarse-to-Fine Cascade of Pruning ClassifiersBruno Conejo, Nikos Komodakis, Sébastien Leprince, Jean-Philippe Avouac. 2105-2113 [doi]
- A Filtering Approach to Stochastic Variational InferenceNeil Houlsby, David M. Blei. 2114-2122 [doi]
- Optimizing F-Measures by Cost-Sensitive ClassificationShameem Puthiya Parambath, Nicolas Usunier, Yves Grandvalet. 2123-2131 [doi]
- Two-Layer Feature Reduction for Sparse-Group Lasso via Decomposition of Convex SetsJie Wang, Jieping Ye. 2132-2140 [doi]
- Improved Multimodal Deep Learning with Variation of InformationKihyuk Sohn, Wenling Shang, Honglak Lee. 2141-2149 [doi]
- PEWA: Patch-based Exponentially Weighted Aggregation for image denoisingCharles Kervrann. 2150-2158 [doi]
- Elementary Estimators for Graphical ModelsEunho Yang, Aurelie C. Lozano, Pradeep K. Ravikumar. 2159-2167 [doi]
- Beyond the Birkhoff Polytope: Convex Relaxations for Vector Permutation ProblemsCong Han Lim, Stephen Wright. 2168-2176 [doi]
- Neural Word Embedding as Implicit Matrix FactorizationOmer Levy, Yoav Goldberg. 2177-2185 [doi]
- Multi-Resolution Cascades for Multiclass Object DetectionMohammad J. Saberian, Nuno Vasconcelos. 2186-2194 [doi]
- Median Selection Subset Aggregation for Parallel InferenceXiangyu Wang, Peichao Peng, David B. Dunson. 2195-2203 [doi]
- Recurrent Models of Visual AttentionVolodymyr Mnih, Nicolas Heess, Alex Graves, Koray Kavukcuoglu. 2204-2212 [doi]
- Tree-structured Gaussian Process ApproximationsThang D. Bui, Richard E. Turner. 2213-2221 [doi]
- Active Learning and Best-Response DynamicsMaria-Florina Balcan, Christopher Berlind, Avrim Blum, Emma Cohen, Kaushik Patnaik, Le Song. 2222-2230 [doi]
- Analog Memories in a Balanced Rate-Based Network of E-I NeuronsDylan Festa, Guillaume Hennequin, Máté Lengyel. 2231-2239 [doi]
- Fast Sampling-Based Inference in Balanced Neuronal NetworksGuillaume Hennequin, Laurence Aitchison, Máté Lengyel. 2240-2248 [doi]
- Spectral Learning of Mixture of Hidden Markov ModelsCem Subakan, Johannes Traa, Paris Smaragdis. 2249-2257 [doi]
- Subspace Embeddings for the Polynomial KernelHaim Avron, Huy Nguyen, David P. Woodruff. 2258-2266 [doi]
- A Boosting Framework on Grounds of Online LearningTofigh Naghibi Mohamadpoor, Beat Pfister. 2267-2275 [doi]
- A Dual Algorithm for Olfactory Computation in the Locust BrainSina Tootoonian, Máté Lengyel. 2276-2284 [doi]
- Advances in Learning Bayesian Networks of Bounded TreewidthSiqi Nie, Denis Deratani Maua, Cassio Polpo de Campos, Qiang Ji. 2285-2293 [doi]
- Learning the Learning Rate for Prediction with Expert AdviceWouter M. Koolen, Tim van Erven, Peter Grünwald. 2294-2302 [doi]
- On the Information Theoretic Limits of Learning Ising ModelsRashish Tandon, Karthikeyan Shanmugam, Pradeep K. Ravikumar, Alexandros G. Dimakis. 2303-2311 [doi]
- Efficient Optimization for Average Precision SVMPritish Mohapatra, C. V. Jawahar, M. Pawan Kumar. 2312-2320 [doi]
- Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS)Anshumali Shrivastava, Ping Li 0001. 2321-2329 [doi]
- A framework for studying synaptic plasticity with neural spike train dataScott W. Linderman, Christopher H. Stock, Ryan P. Adams. 2330-2338 [doi]
- Randomized Experimental Design for Causal Graph DiscoveryHuining Hu, Zhentao Li, Adrian R. Vetta. 2339-2347 [doi]
- A Multiplicative Model for Learning Distributed Text-Based Attribute RepresentationsRyan Kiros, Richard S. Zemel, Ruslan R. Salakhutdinov. 2348-2356 [doi]
- Learning Chordal Markov Networks by Dynamic ProgrammingKustaa Kangas, Mikko Koivisto, Teppo Mikael Niinimäki. 2357-2365 [doi]
- Depth Map Prediction from a Single Image using a Multi-Scale Deep NetworkDavid Eigen, Christian Puhrsch, Rob Fergus. 2366-2374 [doi]
- Proximal Quasi-Newton for Computationally Intensive L1-regularized M-estimatorsKai Zhong, En-Hsu Yen, Inderjit S. Dhillon, Pradeep K. Ravikumar. 2375-2383 [doi]
- A Probabilistic Framework for Multimodal Retrieval using Integrative Indian Buffet ProcessBahadir Ozdemir, Larry S. Davis. 2384-2392 [doi]
- Searching for Higgs Boson Decay Modes with Deep LearningPeter J. Sadowski, Daniel Whiteson, Pierre Baldi. 2393-2401 [doi]
- Structure Regularization for Structured PredictionXu Sun. 2402-2410 [doi]
- On Multiplicative Multitask Feature LearningXin Wang, Jinbo Bi, Shipeng Yu, Jiangwen Sun. 2411-2419 [doi]
- Multivariate f-divergence Estimation With ConfidenceKevin Moon, Alfred O. Hero III. 2420-2428 [doi]
- Generalized Unsupervised Manifold AlignmentZhen Cui, Hong Chang, Shiguang Shan, Xilin Chen. 2429-2437 [doi]
- Smoothed Gradients for Stochastic Variational InferenceStephan Mandt, David M. Blei. 2438-2446 [doi]
- Recursive Context Propagation Network for Semantic Scene LabelingAbhishek Sharma, Oncel Tuzel, Ming-Yu Liu 0001. 2447-2455 [doi]
- Sparse Random Feature Algorithm as Coordinate Descent in Hilbert SpaceIan En-Hsu Yen, Ting-Wei Lin, Shou-de Lin, Pradeep K. Ravikumar, Inderjit S. Dhillon. 2456-2464 [doi]
- Optimal Teaching for Limited-Capacity Human LearnersKaustubh R. Patil, Xiaojin Zhu, Lukasz Kopec, Bradley C. Love. 2465-2473 [doi]
- Shaping Social Activity by Incentivizing UsersMehrdad Farajtabar, Nan Du, Manuel Gomez-Rodriguez, Isabel Valera, Hongyuan Zha, Le Song. 2474-2482 [doi]
- Analysis of Brain States from Multi-Region LFP Time-SeriesKyle R. Ulrich, David E. Carlson, Wenzhao Lian, Jana S. Borg, Kafui Dzirasa, Lawrence Carin. 2483-2491 [doi]
- Reputation-based Worker Filtering in CrowdsourcingSrikanth Jagabathula, Lakshminarayanan Subramanian, Ashwin Venkataraman. 2492-2500 [doi]
- Multi-Class Deep BoostingVitaly Kuznetsov, Mehryar Mohri, Umar Syed. 2501-2509 [doi]
- A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and InsightsWeijie Su, Stephen Boyd, Emmanuel J. Candès. 2510-2518 [doi]
- Difference of Convex Functions Programming for Reinforcement LearningBilal Piot, Matthieu Geist, Olivier Pietquin. 2519-2527 [doi]
- Design Principles of the Hippocampal Cognitive MapKimberly L. Stachenfeld, Matthew Botvinick, Samuel Gershman. 2528-2536 [doi]
- Deep Symmetry NetworksRobert Gens, Pedro M. Domingos. 2537-2545 [doi]
- Nonparametric Bayesian inference on multivariate exponential familiesWilliam R. Vega-Brown, Marek Doniec, Nicholas Roy. 2546-2554 [doi]
- Optimal rates for k-NN density and mode estimationSanjoy Dasgupta, Samory Kpotufe. 2555-2563 [doi]
- Feedforward Learning of Mixture ModelsMatthew Lawlor, Steven W. Zucker. 2564-2572 [doi]
- Diverse Randomized Agents Vote to WinAlbert Xin Jiang, Leandro Soriano Marcolino, Ariel D. Procaccia, Tuomas Sandholm, Nisarg Shah, Milind Tambe. 2573-2581 [doi]
- Ranking via Robust Binary ClassificationHyokun Yun, Parameswaran Raman, S. V. N. Vishwanathan. 2582-2590 [doi]
- Distributed Balanced Clustering via Mapping CoresetsMohammadHossein Bateni, Aditya Bhaskara, Silvio Lattanzi, Vahab S. Mirrokni. 2591-2599 [doi]
- Augur: Data-Parallel Probabilistic ModelingJean-Baptiste Tristan, Daniel Huang, Joseph Tassarotti, Adam C. Pocock, Stephen J. Green, Guy L. Steele Jr.. 2600-2608 [doi]
- Learning Mixtures of Ranking ModelsPranjal Awasthi, Avrim Blum, Or Sheffet, Aravindan Vijayaraghavan. 2609-2617 [doi]
- Controlling privacy in recommender systemsYu Xin, Tommi Jaakkola. 2618-2626 [doi]
- Convolutional Kernel NetworksJulien Mairal, Piotr Koniusz, Zaïd Harchaoui, Cordelia Schmid. 2627-2635 [doi]
- Fairness in Multi-Agent Sequential Decision-MakingChongjie Zhang, Julie A. Shah. 2636-2644 [doi]
- Submodular meets Structured: Finding Diverse Subsets in Exponentially-Large Structured Item SetsAdarsh Prasad, Stefanie Jegelka, Dhruv Batra. 2645-2653 [doi]
- Do Deep Nets Really Need to be Deep?Jimmy Ba, Rich Caruana. 2654-2662 [doi]
- Dynamic Rank Factor Model for Text StreamsShaobo Han, Lin Du, Esther Salazar, Lawrence Carin. 2663-2671 [doi]
- Generative Adversarial NetsIan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, Yoshua Bengio. 2672-2680 [doi]
- Testing Unfaithful Gaussian Graphical ModelsDe Wen Soh, Sekhar C. Tatikonda. 2681-2689 [doi]
- Global Sensitivity Analysis for MAP Inference in Graphical ModelsJasper De Bock, Cassio Polpo de Campos, Alessandro Antonucci. 2690-2698 [doi]
- Deconvolution of High Dimensional Mixtures via Boosting, with Application to Diffusion-Weighted MRI of Human BrainCharles Y. Zheng, Franco Pestilli, Ariel Rokem. 2699-2707 [doi]
- Efficient Minimax Signal Detection on GraphsJing Qian, Venkatesh Saligrama. 2708-2716 [doi]
- Cone-Constrained Principal Component AnalysisYash Deshpande, Andrea Montanari, Emile Richard. 2717-2725 [doi]
- On Communication Cost of Distributed Statistical Estimation and DimensionalityAnkit Garg, Tengyu Ma, Huy L. Nguyen. 2726-2734 [doi]
- Computing Nash Equilibria in Generalized Interdependent Security GamesHau Chan, Luis E. Ortiz. 2735-2743 [doi]
- Consistent Binary Classification with Generalized Performance MetricsOluwasanmi O. Koyejo, Nagarajan Natarajan, Pradeep K. Ravikumar, Inderjit S. Dhillon. 2744-2752 [doi]
- Greedy Subspace ClusteringDohyung Park, Constantine Caramanis, Sujay Sanghavi. 2753-2761 [doi]
- Deterministic Symmetric Positive Semidefinite Matrix CompletionWilliam E. Bishop, Byron M. Yu. 2762-2770 [doi]
- Multi-Step Stochastic ADMM in High Dimensions: Applications to Sparse Optimization and Matrix DecompositionHanie Sedghi, Anima Anandkumar, Edmond A. Jonckheere. 2771-2779 [doi]
- Online combinatorial optimization with stochastic decision sets and adversarial lossesGergely Neu, Michal Valko. 2780-2788 [doi]
- Sampling for Inference in Probabilistic Models with Fast Bayesian QuadratureTom Gunter, Michael A. Osborne, Roman Garnett, Philipp Hennig, Stephen J. Roberts. 2789-2797 [doi]
- Multi-Scale Spectral Decomposition of Massive GraphsSi Si, Donghyuk Shin, Inderjit S. Dhillon, Beresford N. Parlett. 2798-2806 [doi]
- The limits of squared Euclidean distance regularizationMichal Derezinski, Manfred K. Warmuth. 2807-2815 [doi]
- Bregman Alternating Direction Method of MultipliersHuahua Wang, Arindam Banerjee. 2816-2824 [doi]
- Multitask learning meets tensor factorization: task imputation via convex optimizationKishan Wimalawarne, Masashi Sugiyama, Ryota Tomioka. 2825-2833 [doi]
- On Model Parallelization and Scheduling Strategies for Distributed Machine LearningSeunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho, Garth A. Gibson, Eric P. Xing. 2834-2842 [doi]
- Scalable Inference for Neuronal Connectivity from Calcium ImagingAlyson K. Fletcher, Sundeep Rangan. 2843-2851 [doi]
- Structure learning of antiferromagnetic Ising modelsGuy Bresler, David Gamarnik, Devavrat Shah. 2852-2860 [doi]
- The Noisy Power Method: A Meta Algorithm with ApplicationsMoritz Hardt, Eric Price. 2861-2869 [doi]
- Algorithm selection by rational metareasoning as a model of human strategy selectionFalk Lieder, Dillon Plunkett, Jessica B. Hamrick, Stuart J. Russell, Nicholas Hay, Thomas L. Griffiths. 2870-2878 [doi]
- Extremal Mechanisms for Local Differential PrivacyPeter Kairouz, Sewoong Oh, Pramod Viswanath. 2879-2887 [doi]
- Global Belief Recursive Neural NetworksRomain Paulus, Richard Socher, Christopher D. Manning. 2888-2896 [doi]
- A statistical model for tensor PCAEmile Richard, Andrea Montanari. 2897-2905 [doi]
- Real-Time Decoding of an Integrate and Fire EncoderShreya Saxena, Munther A. Dahleh. 2906-2914 [doi]
- Delay-Tolerant Algorithms for Asynchronous Distributed Online LearningH. Brendan McMahan, Matthew J. Streeter. 2915-2923 [doi]
- On the Number of Linear Regions of Deep Neural NetworksGuido F. Montúfar, Razvan Pascanu, KyungHyun Cho, Yoshua Bengio. 2924-2932 [doi]
- Identifying and attacking the saddle point problem in high-dimensional non-convex optimizationYann N. Dauphin, Razvan Pascanu, Çaglar Gülçehre, KyungHyun Cho, Surya Ganguli, Yoshua Bengio. 2933-2941 [doi]
- Extracting Latent Structure From Multiple Interacting Neural PopulationsJoão D. Semedo, Amin Zandvakili, Adam Kohn, Christian K. Machens, Byron M. Yu. 2942-2950 [doi]
- Learning with Fredholm KernelsQichao Que, Mikhail Belkin, Yusu Wang. 2951-2959 [doi]
- Hamming Ball Auxiliary Sampling for Factorial Hidden Markov ModelsMichalis K. Titsias, Christopher Yau. 2960-2968 [doi]
- Optimizing Energy Production Using Policy Search and Predictive State RepresentationsYuri Grinberg, Doina Precup, Michel Gendreau. 2969-2977 [doi]
- Scaling-up Importance Sampling for Markov Logic NetworksDeepak Venugopal, Vibhav G. Gogate. 2978-2986 [doi]
- Optimal Neural Codes for Control and EstimationAlex K. Susemihl, Ron Meir, Manfred Opper. 2987-2995 [doi]
- Graph Clustering With Missing Data: Convex Algorithms and AnalysisRamya Korlakai Vinayak, Samet Oymak, Babak Hassibi. 2996-3004 [doi]
- Scale Adaptive Blind DeblurringHaichao Zhang, Jianchao Yang. 3005-3013 [doi]
- Weighted importance sampling for off-policy learning with linear function approximationA. Rupam Mahmood, Hado van Hasselt, Richard S. Sutton. 3014-3022 [doi]
- Information-based learning by agents in unbounded state spacesShariq A. Mobin, James A. Arnemann, Fritz Sommer. 3023-3031 [doi]
- Exponential Concentration of a Density Functional EstimatorShashank Singh, Barnabás Póczos. 3032-3040 [doi]
- Scalable Kernel Methods via Doubly Stochastic GradientsBo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina Balcan, Le Song. 3041-3049 [doi]
- Fast Training of Pose Detectors in the Fourier DomainJoão F. Henriques, Pedro Martins 0004, Rui F. Caseiro, Jorge Batista. 3050-3058 [doi]
- An Accelerated Proximal Coordinate Gradient MethodQihang Lin, Zhaosong Lu, Lin Xiao. 3059-3067 [doi]
- Communication-Efficient Distributed Dual Coordinate AscentMartin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan, Thomas Hofmann, Michael I. Jordan. 3068-3076 [doi]
- Simple MAP Inference via Low-Rank RelaxationsRoy Frostig, Sida I. Wang, Percy S. Liang, Christopher D. Manning. 3077-3085 [doi]
- A* SamplingChris J. Maddison, Daniel Tarlow, Tom Minka. 3086-3094 [doi]
- A Bayesian model for identifying hierarchically organised states in neural population activityPatrick Putzky, Florian Franzen, Giacomo Bassetto, Jakob H. Macke. 3095-3103 [doi]
- Sequence to Sequence Learning with Neural NetworksIlya Sutskever, Oriol Vinyals, Quoc V. Le. 3104-3112 [doi]
- Improved Distributed Principal Component AnalysisYingyu Liang, Maria-Florina Balcan, Vandana Kanchanapally, David P. Woodruff. 3113-3121 [doi]
- Sparse Polynomial Learning and Graph SketchingMurat Kocaoglu, Karthikeyan Shanmugam, Alexandros G. Dimakis, Adam R. Klivans. 3122-3130 [doi]
- Tight Continuous Relaxation of the Balanced k-Cut ProblemSyama Sundar Rangapuram, Pramod Kaushik Mudrakarta, Matthias Hein 0001. 3131-3139 [doi]
- Mondrian Forests: Efficient Online Random ForestsBalaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh. 3140-3148 [doi]
- Expectation-Maximization for Learning Determinantal Point ProcessesJennifer Gillenwater, Alex Kulesza, Emily B. Fox, Benjaminn Taskar. 3149-3157 [doi]
- Capturing Semantically Meaningful Word Dependencies with an Admixture of Poisson MRFsDavid Inouye, Pradeep K. Ravikumar, Inderjit S. Dhillon. 3158-3166 [doi]
- Streaming, Memory Limited Algorithms for Community DetectionSe-Young Yun, Marc Lelarge, Alexandre Proutière. 3167-3175 [doi]
- Content-based recommendations with Poisson factorizationPrem Gopalan, Laurent Charlin, David M. Blei. 3176-3184 [doi]
- A Statistical Decision-Theoretic Framework for Social ChoiceHossein Azari Soufiani, David C. Parkes, Lirong Xia. 3185-3193 [doi]
- Compressive Sensing of Signals from a GMM with Sparse Precision MatricesJianbo Yang, Xuejun Liao, Minhua Chen, Lawrence Carin. 3194-3202 [doi]
- Bayesian Sampling Using Stochastic Gradient ThermostatsNan Ding, Youhan Fang, Ryan Babbush, Changyou Chen, Robert D. Skeel, Hartmut Neven. 3203-3211 [doi]
- On Sparse Gaussian Chain Graph ModelsCalvin McCarter, Seyoung Kim. 3212-3220 [doi]
- Orbit RegularizationRenato Negrinho, Andre Martins. 3221-3229 [doi]
- Efficient Minimax Strategies for Square Loss GamesWouter M. Koolen, Alan Malek, Peter L. Bartlett. 3230-3238 [doi]
- A Residual Bootstrap for High-Dimensional Regression with Near Low-Rank DesignsMiles Lopes. 3239-3247 [doi]
- Large-Margin Convex Polytope MachineAlex Kantchelian, Michael Carl Tschantz, Ling Huang, Peter L. Bartlett, Anthony D. Joseph, J. Doug Tygar. 3248-3256 [doi]
- Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable ModelsYarin Gal, Mark van der Wilk, Carl E. Rasmussen. 3257-3265 [doi]
- Learning Distributed Representations for Structured Output PredictionVivek Srikumar, Christopher D. Manning. 3266-3274 [doi]
- Convex Deep Learning via Normalized KernelsÖzlem Aslan, Xinhua Zhang, Dale Schuurmans. 3275-3283 [doi]
- Tight convex relaxations for sparse matrix factorizationEmile Richard, Guillaume Obozinski, Jean-Philippe Vert. 3284-3292 [doi]
- Learning to Search in Branch and Bound AlgorithmsHe He, Hal Daume III, Jason M. Eisner. 3293-3301 [doi]
- An Integer Polynomial Programming Based Framework for Lifted MAP InferenceSomdeb Sarkhel, Deepak Venugopal, Parag Singla, Vibhav Gogate. 3302-3310 [doi]
- Conditional Random Field Autoencoders for Unsupervised Structured PredictionWaleed Ammar, Chris Dyer, Noah A. Smith. 3311-3319 [doi]
- How transferable are features in deep neural networks?Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson. 3320-3328 [doi]
- Accelerated Mini-batch Randomized Block Coordinate Descent MethodTuo Zhao, Mo Yu, Yiming Wang, Raman Arora, Han Liu. 3329-3337 [doi]
- Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search PlanningXiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L. Lewis, Xiaoshi Wang. 3338-3346 [doi]
- A Latent Source Model for Online Collaborative FilteringGuy Bresler, George H. Chen, Devavrat Shah. 3347-3355 [doi]
- Distributed Bayesian Posterior Sampling via Moment SharingMinjie Xu, Balaji Lakshminarayanan, Yee Whye Teh, Jun Zhu, Bo Zhang. 3356-3364 [doi]
- Learning with Pseudo-EnsemblesPhilip Bachman, Ouais Alsharif, Doina Precup. 3365-3373 [doi]
- Learning Time-Varying Coverage FunctionsNan Du, Yingyu Liang, Maria-Florina Balcan, Le Song. 3374-3382 [doi]
- Tighten after Relax: Minimax-Optimal Sparse PCA in Polynomial TimeZhaoran Wang, Huanran Lu, Han Liu. 3383-3391 [doi]
- Discriminative Metric Learning by Neighborhood GerrymanderingShubhendu Trivedi, David McAllester, Greg Shakhnarovich. 3392-3400 [doi]
- Finding a sparse vector in a subspace: Linear sparsity using alternating directionsQing Qu, Ju Sun, John Wright. 3401-3409 [doi]
- Asynchronous Anytime Sequential Monte CarloBrooks Paige, Frank Wood, Arnaud Doucet, Yee Whye Teh. 3410-3418 [doi]
- Discrete Graph HashingWei Liu, Cun Mu, Sanjiv Kumar, Shih-Fu Chang. 3419-3427 [doi]
- Feedback Detection for Live PredictorsStefan Wager, Nick Chamandy, Omkar Muralidharan, Amir Najmi. 3428-3436 [doi]
- Rates of Convergence for Nearest Neighbor ClassificationKamalika Chaudhuri, Sanjoy Dasgupta. 3437-3445 [doi]
- Consistency of weighted majority votesDaniel Berend, Aryeh Kontorovich. 3446-3454 [doi]
- Beta-Negative Binomial Process and Exchangeable Random Partitions for Mixed-Membership ModelingMingyuan Zhou. 3455-3463 [doi]
- Zero-shot recognition with unreliable attributesDinesh Jayaraman, Kristen Grauman. 3464-3472 [doi]
- Concavity of reweighted Kikuchi approximationPo-Ling Loh, Andre Wibisono. 3473-3481 [doi]
- Online Decision-Making in General Combinatorial SpacesArun Rajkumar, Shivani Agarwal 0001. 3482-3490 [doi]
- Fast Multivariate Spatio-temporal Analysis via Low Rank Tensor LearningMohammad Taha Bahadori, Qi Rose Yu, Yan Liu 0002. 3491-3499 [doi]
- Clustered factor analysis of multineuronal spike dataLars Buesing, Timothy A. Machado, John P. Cunningham, Liam Paninski. 3500-3508 [doi]
- Algorithms for CVaR Optimization in MDPsYinlam Chow, Mohammad Ghavamzadeh. 3509-3517 [doi]
- Factoring Variations in Natural Images with Deep Gaussian Mixture ModelsAäron Van Den Oord, Benjamin Schrauwen. 3518-3526 [doi]
- Partition-wise Linear ModelsHidekazu Oiwa, Ryohei Fujimaki. 3527-3535 [doi]
- LSDA: Large Scale Detection through AdaptationJudy Hoffman, Sergio Guadarrama, Eric Tzeng, Ronghang Hu, Jeff Donahue, Ross B. Girshick, Trevor Darrell, Kate Saenko. 3536-3544 [doi]
- Deep Networks with Internal Selective Attention through Feedback ConnectionsMarijn Stollenga, Jonathan Masci, Faustino J. Gomez, Jürgen Schmidhuber. 3545-3553 [doi]
- Parallel Feature Selection Inspired by Group TestingYingbo Zhou, Utkarsh Porwal, Ce Zhang, Hung Q. Ngo, Long Nguyen, Christopher Ré, Venu Govindaraju. 3554-3562 [doi]
- Low-Rank Time-Frequency SynthesisCédric Févotte, Matthieu Kowalski. 3563-3571 [doi]
- Pre-training of Recurrent Neural Networks via Linear AutoencodersLuca Pasa, Alessandro Sperduti. 3572-3580 [doi]
- Semi-supervised Learning with Deep Generative ModelsDiederik P. Kingma, Shakir Mohamed, Danilo Jimenez Rezende, Max Welling. 3581-3589 [doi]
- Signal Aggregate Constraints in Additive Factorial HMMs, with Application to Energy DisaggregationMingjun Zhong, Nigel H. Goddard, Charles A. Sutton. 3590-3598 [doi]
- Stochastic variational inference for hidden Markov modelsNicholas J. Foti, Jason Xu, Dillon Laird, Emily B. Fox. 3599-3607 [doi]
- A Wild Bootstrap for Degenerate Kernel TestsKacper Chwialkowski, Dino Sejdinovic, Arthur Gretton. 3608-3616 [doi]
- Biclustering Usinig Message PassingLuke O'Connor, Soheil Feizi. 3617-3625 [doi]
- Fast Kernel Learning for Multidimensional Pattern ExtrapolationAndrew Gordon Wilson, Elad Gilboa, John P. Cunningham, Arye Nehorai. 3626-3634 [doi]
- Learning on graphs using Orthonormal Representation is Statistically ConsistentRakesh Shivanna, Chiranjib Bhattacharyya. 3635-3643 [doi]
- Spectral k-Support Norm RegularizationAndrew M. McDonald, Massimiliano Pontil, Dimitris Stamos. 3644-3652 [doi]
- Unsupervised learning of an efficient short-term memory networkPietro Vertechi, Wieland Brendel, Christian K. Machens. 3653-3661 [doi]
- Quantized Estimation of Gaussian Sequence Models in Euclidean BallsYuancheng Zhu, John D. Lafferty. 3662-3670 [doi]
- Learning a Concept Hierarchy from Multi-labeled DocumentsViet-An Nguyen, Jordan L. Boyd-Graber, Philip Resnik, Jonathan Chang. 3671-3679 [doi]
- Variational Gaussian Process State-Space ModelsRoger Frigola, Yutian Chen, Carl E. Rasmussen. 3680-3688 [doi]
- Fast Prediction for Large-Scale Kernel MachinesCho-Jui Hsieh, Si Si, Inderjit S. Dhillon. 3689-3697 [doi]