The following publications are possibly variants of this publication:
- Weakly supervised 6D pose estimation for robotic graspingYaoxin Li, Jinghua Sun, Xiaoqian Li, Zhanpeng Zhang, Hui Cheng, Xiaogang Wang. vrcai 2018: [doi]
- 6D Pose Estimation Method of Metal Parts for Robotic Grasping Based on Semantic-Level Line MatchingZe'an Liu, Zhenguo Wu, Bin Pu, Jixiang Tang, Xuanyin Wang. icira 2023: 3-13 [doi]
- Deep instance segmentation and 6D object pose estimation in cluttered scenes for robotic autonomous graspingYongxiang Wu, Yili Fu, Shuguo Wang. irob, 47(4):593-606, 2020. [doi]
- RGB-Based Set Prediction Transformer of 6D Pose Estimation for Robotic Grasping ApplicationXiao Ning, Beining Yang, Si Huang, Zhenzhe Zhang, Binhui Pan. access, 12:138047-138060, 2024. [doi]
- NGANet: Neighborhood-aware Graph Aggregation Network for 6D pose estimation in robotic graspingLu Chen 0003, Yuhao Zheng, Peng Wu, Jing Yang 0026, Yan Gao, Jingyang Liu. robotica, 43(9):3095-3111, 2025. [doi]
- 6D Pose Estimation of Industrial Parts Based on Point Cloud Geometric Information Prediction for Robotic GraspingQinglei Zhang, Cuige Xue, Jiyun Qin, Jianguo Duan, Ying Zhou. entropy, 26(12):1022, 2024. [doi]