Abstract is missing.
- Knowledge Representation Issues in Control Knowledge LearningRicardo Aler, Daniel Borrajo, Pedro Isasi. 1-8
- Reducing Multiclass to Binary: A Unifying Approach for Margin ClassifiersErin L. Allwein, Robert E. Schapire, Yoram Singer. 9-16
- A Nonparametric Approach to Noisy and Costly OptimizationBrigham S. Anderson, Andrew W. Moore, David Cohn. 17-24
- Behavioral Cloning of Student Pilots with Modular Neural NetworksCharles W. Anderson, Bruce A. Draper, David A. Peterson. 25-32
- Combining Multiple PerspectivesBikramjit Banerjee, Sandip Debnath, Sandip Sen. 33-40
- Reinforcement Learning in POMDP s via Direct Gradient AscentJonathan Baxter, Peter L. Bartlett. 41-48
- Characterizing Model Erros and DifferencesStephen D. Bay, Michael J. Pazzani. 49-56
- Duality and Geometry in SVM ClassifiersKristin P. Bennett, Erin J. Bredensteiner. 57-64
- A Column Generation Algorithm For BoostingKristin P. Bennett, Ayhan Demiriz, John Shawe-Taylor. 65-72
- Disciple-COA: From Agent Programming to Agent TeachingMihai Boicu, Gheorghe Tecuci, Dorin Marcu, Michael Bowman, Ping Shyr, Florin Ciucu, Cristian Levcovici. 73-80
- Classification of Individuals with Complex StructureAntony F. Bowers, Christophe G. Giraud-Carrier, John W. Lloyd. 81-88
- Convergence Problems of General-Sum Multiagent Reinforcement LearningMichael H. Bowling. 89-94
- Finding Variational Structure in Data by Cross-Entropy OptimizationMatthew Brand. 95-102
- Challenges of the Email Domain for Text ClassificationJake D. Brutlag, Christopher Meek. 103-110
- Query Learning with Large Margin ClassifiersColin Campbell, Nello Cristianini, Alex J. Smola. 111-118
- Dimension Reduction Techniques for Training Polynomial NetworksWilliam M. Campbell, Kari Torkkola, Sreeream V. Balakrishnan. 119-126
- Learning to Create Customized Authority ListsHuan Chang, David Cohn, Andrew McCallum. 127-134
- Learning to Select Text Databases with Neural NetsYong S. Choi, Suk I. Yoo. 135-142
- A Divide and Conquer Approach to Learning from Prior KnowledgeEric Chown, Thomas G. Dietterich. 143-150
- Learning in Non-stationary Conditions: A Control Theoretic ApproachJefferson A. Coelho Jr., Roderic A. Grupen. 151-158
- Automatically Extracting Features for Concept Learning from the WebWilliam W. Cohen. 159-166
- Learning to Probabilistically Identify Authoritative DocumentsDavid Cohn, Huan Chang. 167-174
- Discriminative Reranking for Natural Language ParsingMichael Collins. 175-182
- Automatic Identification of Mathematical ConceptsSimon Colton, Alan Bundy, Toby Walsh. 183-190
- On-line Learning for Humanoid Robot SystemsJörg Conradt, Gaurav Tevatia, Sethu Vijayakumar, Stefan Schaal. 191-198
- Using Multiple Levels of Learning and Diverse Evidence to Uncover Coordinately Controlled GenesMark Craven, David Page, Jude W. Shavlik, Joseph Bockhorst, Jeremy D. Glasner. 199-206
- Fixed Points of Approximate Value Iteration and Temporal-Difference LearningDaniela Pucci de Farias, Benjamin Van Roy. 207-214
- Hidden Strengths and Limitations: An Empirical Investigation of Reinforcement LearningGerald DeJong. 215-222
- Bayesian Averaging of Classifiers and the Overfitting ProblemPedro Domingos. 223-230
- A Unifeid Bias-Variance Decomposition and its ApplicationsPedro Domingos. 231-238
- Exploiting the Cost (In)sensitivity of Decision Tree Splitting CriteriaChris Drummond, Robert C. Holte. 239-246
- Feature Subset Selection and Order Identification for Unsupervised LearningJennifer G. Dy, Carla E. Brodley. 247-254
- Anomaly Detection over Noisy Data using Learned Probability DistributionsEleazar Eskin. 255-262
- Ideal Theory Refinement under Object IdentityFloriana Esposito, Nicola Fanizzi, Stefano Ferilli, Giovanni Semeraro. 263-270
- Bounds on the Generalization Performance of Kernel Machine EnsemblesTheodoros Evgeniou, Luis Pérez-Breva, Massimiliano Pontil, Tomaso Poggio. 271-278
- Online Ensemble Learning: An Empirical StudyAlan Fern, Robert Givan. 279-286
- Learning Subjective Functions with Large MarginsClaude-Nicolas Fiechter, Seth Rogers. 287-294
- Relative Loss Bounds for Temporal-Difference LearningJürgen Forster, Manfred K. Warmuth. 295-302
- Using Error-Correcting Codes for Text ClassificationRayid Ghani. 303-310
- Analyzing Relational Learning in the Phase Transition FrameworkAttilio Giordana, Lorenza Saitta, Michèle Sebag, Marco Botta. 311-318
- Learning Multiple Models for Reward MaximizationDani Goldberg, Maja J. Mataric. 319-326
- Enhancing Supervised Learning with Unlabeled DataSally A. Goldman, Yan Zhou. 327-334
- Learning FilamentsGeoffrey J. Gordon, Andrew Moore. 335-342
- Localizing Policy Gradient Estimates to Action TransitionGregory Z. Grudic, Lyle H. Ungar. 343-350
- Learning Curved Multinomial Subfamilies for Natural Language Processing and Information RetrievalKeith Hall, Thomas Hofmann. 351-358
- Correlation-based Feature Selection for Discrete and Numeric Class Machine LearningMark A. Hall. 359-366
- Empirical Bayes for Learning to LearnTom Heskes. 367-374
- Meta-Learning for Phonemic Annotation of CorporaVéronique Hoste, Walter Daelemans, Erik F. Tjong Kim Sang, Steven Gillis. 375-382
- An Integrated Connectionist Approach to Reinforcement Learning for Robotic ControlDean F. Hougen, Maria L. Gini, James R. Slagle. 383-390
- Data as Ensembles of Records: Representation and ComparisonNicholas R. Howe. 391-398
- Why Discretization Works for Naive Bayesian ClassifiersChun-Nan Hsu, Hung-Ju Huang, Tzu-Tsung Wong. 399-406
- Experimental Results on Q-Learning for General-Sum Stochastic GamesJunling Hu, Michael P. Wellman. 407-414
- Learning Declarative Control Rules for Constraint-BAsed PlanningYi-Cheng Huang, Bart Selman, Henry A. Kautz. 415-422
- Approximate Dimension Equalization in Vector-based Information RetrievalFan Jiang, Michael L. Littman. 423-430
- Estimating the Generalization Performance of an SVM EfficientlyThorsten Joachims. 431-438
- State-based Classification of Finger Gestures from Electromyographic SignalsPeter Ju, Leslie Pack Kaelbling, Yoram Singer. 439-446
- A Universal Generalization for Temporal-Difference Learning Using Haar Basis FunctionsSusumu Katayama, Hajime Kimura, Shigenobu Kobayashi. 447-454
- MultiStage Cascading of Multiple Classifiers: One Man s Noise is Another Man s DataCenk Kaynak, Ethem Alpaydin. 455-462
- Pseudo-convergent Q-Learning by Competitive PricebotsJeffrey O. Kephart, Gerald Tesauro. 463-470
- Learning Horn Expressions with LogAn-HRoni Khardon. 471-478
- Learning Bayesian Networks for Diverse and Varying numbers of Evidence SetsZu Whan Kim, Ramakant Nevatia. 479-486
- Detecting Concept Drift with Support Vector MachinesRalf Klinkenberg, Thorsten Joachims. 487-494
- A Dynamic Adaptation of AD-trees for Efficient Machine Learning on Large Data SetsPaul Komarek, Andrew W. Moore. 495-502
- Voting Nearest-Neighbor SubclassifiersMiroslav Kubat, Martin Cooperson Jr.. 503-510
- Algorithm Selection using Reinforcement LearningMichail G. Lagoudakis, Michael L. Littman. 511-518
- Data Reduction Techniques for Instance-Based Learning from Human/Computer Interface DataTerran Lane, Carla E. Brodley. 519-526
- Version Space Algebra and its Application to Programming by DemonstrationTessa A. Lau, Pedro Domingos, Daniel S. Weld. 527-534
- An Algorithm for Distributed Reinforcement Learning in Cooperative Multi-Agent SystemsMartin Lauer, Martin A. Riedmiller. 535-542
- A Bayesian Approach to Temporal Data Clustering using Hidden Markov ModelsCen Li, Gautam Biswas. 543-550
- The Space of Jumping Emerging Patterns and Its Incremental Maintenance AlgorithmsJinyan Li, Kotagiri Ramamohanarao, Guozhu Dong. 551-558
- Selective Voting for Perception-like Online LearningYi Li. 559-566
- An Initial Study of an Adaptive Hierarchical Vision SystemMarcus A. Maloof. 567-574
- Efficient Mining from Large Databases by Query LearningHiroshi Mamitsuka, Naoki Abe. 575-582
- Bootstrap Methods for the Cost-Sensitive Evaluation of ClassifiersDragos D. Margineantu, Thomas G. Dietterich. 583-590
- Maximum Entropy Markov Models for Information Extraction and SegmentationAndrew McCallum, Dayne Freitag, Fernando C. N. Pereira. 591-598
- Mixtures of Factor AnalyzersGeoffrey J. McLachlan, David Peel. 599-606
- Boosting a Positive-Data-Only LearnerAndrew R. Mitchell. 607-614
- Machine Learning for Subproblem SelectionRobert Moll, Theodore J. Perkins, Andrew G. Barto. 615-622
- Acquisition of Stand-up Behavior by a Real Robot using Hierarchical Reinforcement LearningJun Morimoto, Kenji Doya. 623-630
- Learning Chomsky-like Grammars for Biological Sequence FamiliesStephen Muggleton, Christopher H. Bryant, Ashwin Srinivasan. 631-638
- Complete Cross-Validation for Nearest Neighbor ClassifiersMatthew D. Mullin, Rahul Sukthankar. 639-646
- Rates of Convergence for Variable Resolution Schemes in Optimal ControlRémi Munos, Andrew W. Moore. 647-654
- A Boosting Approach to Topic Spotting on SubdialoguesKary Myers, Michael J. Kearns, Satinder P. Singh, Marilyn A. Walker. 655-662
- Algorithms for Inverse Reinforcement LearningAndrew Y. Ng, Stuart J. Russell. 663-670
- Learning Probabilistic Models for Decision-Theoretic Navigation of Mobile RobotsDaniel Nikovski, Illah R. Nourbakhsh. 671-678
- An Approach to Data Reduction and Clustering with Theoretical GuaranteesPartha Niyogi, Narendra Karmarkar. 679-686
- Comparing the Minimum Description Length Principle and Boosting in the Automatic Analysis of DiscourseTadashi Nomoto, Yuji Matsumoto. 687-694
- Generalized Average-Case Analyses of the Nearest Neighbor AlgorithmSeishi Okamoto, Nobuhiro Yugami. 695-702
- FeatureBoost: A Meta-Learning Algorithm that Improves Model RobustnessJoseph O Sullivan, John Langford, Rich Caruana, Avrim Blum. 703-710
- Learning Distributed Representations by Mapping Concepts and Relations into a Linear SpaceAlberto Paccanaro, Geoffrey E. Hinton. 711-718
- Clustering the Users of Large Web Sites into CommunitiesGeorgios Paliouras, Christos Papatheodorou, Vangelis Karkaletsis, Constantine D. Spyropoulos. 719-726
- X-means: Extending K-means with Efficient Estimation of the Number of ClustersDan Pelleg, Andrew W. Moore. 727-734
- A Normative Examination of Ensemble Learning AlgorithmsDavid M. Pennock, Pedrito Maynard-Reid II, C. Lee Giles, Eric Horvitz. 735-742
- Meta-Learning by Landmarking Various Learning AlgorithmsBernhard Pfahringer, Hilan Bensusan, Christophe G. Giraud-Carrier. 743-750
- Constructive Feature Learning and the Development of Visual ExpertiseJustus H. Piater, Roderic A. Grupen. 751-758
- Eligibility Traces for Off-Policy Policy EvaluationDoina Precup, Richard S. Sutton, Satinder P. Singh. 759-766
- Shaping in Reinforcement Learning by Changing the Physics of the ProblemJette Randløv. 767-774
- Combining Reinforcement Learning with a Local Control AlgorithmJette Randløv, Andrew G. Barto, Michael T. Rosenstein. 775-782
- Adaptive Resolution Model-Free Reinforcement Learning: Decision Boundary PartitioningStuart I. Reynolds. 783-790
- Knowledge Propagation in Model-based Reinforcement Learning TasksCorinna Richter, Jörg Stachowiak. 791-798
- Image Color Constancy Using EM and Cached StatisticsCharles R. Rosenberg. 799-806
- Learning to Fly: An Application of Hierarchical Reinforcement LearningMalcolm R. K. Ryan, Mark D. Reid. 807-814
- Direct Bayes Point MachinesMatthias Rychetsky, John Shawe-Taylor, Manfred Glesner. 815-822
- Achieving Efficient and Cognitively Plausible Learning in BackgammonScott Sanner, John R. Anderson, Christian Lebiere, Marsha C. Lovett. 823-830
- Predicting the Generalization Performance of Cross Validatory Model Selection CriteriaTobias Scheffer. 831-838
- Less is More: Active Learning with Support Vector MachinesGreg Schohn, David Cohn. 839-846
- An Adaptive Regularization Criterion for Supervised LearningDale Schuurmans, Finnegan Southey. 847-854
- Instance Pruning as an Information Preserving ProblemMarc Sebban, Richard Nock. 855-862
- Incremental Learning in SwiftFileRichard Segal, Jeffrey O. Kephart. 863-870
- Using Knowledge to Speed Learning: A Comparison of Knowledge-based Cascade-correlation and Multi-task LearningThomas R. Shultz, François Rivest. 871-878
- Obtaining Simplified Rule Bases by Hybrid LearningRicardo Bezerra de Andrade e Silva, Teresa Bernarda Ludermir. 879-886
- Learning to Predict Performance from Formula Modeling and Training DataBryan Singer, Manuela M. Veloso. 887-894
- Discovering Test Set Regularities in Relational DomainsSeán Slattery, Tom M. Mitchell. 895-902
- Practical Reinforcement Learning in Continuous SpacesWilliam D. Smart, Leslie Pack Kaelbling. 903-910
- Sparse Greedy Matrix Approximation for Machine LearningAlex J. Smola, Bernhard Schölkopf. 911-918
- Using Learning by Discovery to Segment Remotely Sensed ImagesLeen-Kiat Soh, Costas Tsatsoulis. 919-926
- Multi-agent Q-learning and Regression Trees for Automated Pricing DecisionsManu Sridharan, Gerald Tesauro. 927-934
- TPOT-RL Applied to Network RoutingPeter Stone. 935-942
- A Bayesian Framework for Reinforcement LearningMalcolm J. A. Strens. 943-950
- Feature Selection and Incremental Learning of Probabilistic Concept HierarchiesLuis Talavera. 951-958
- Efficient Learning Through Evolution: Neural Programming and Internal ReinforcementAstro Teller, Manuela M. Veloso. 959-966
- Selection of Support Vector Kernel Parameters for Improved GeneralizationLoo-Nin Teow, Kia-Fock Loe. 967-974
- Probabilistic DFA Inference using Kullback-Leibler Divergence and MinimalityFranck Thollard, Pierre Dupont, Colin de la Higuera. 975-982
- A Comparative Study of Cost-Sensitive Boosting AlgorithmsKai Ming Ting. 983-990
- Discovering the Structure of Partial Differential Equations from Example BehaviourLjupco Todorovski, Saso Dzeroski, Ashwin Srinivasan, Jonathan Whiteley, David Gavaghan. 991-998
- Support Vector Machine Active Learning with Application sto Text ClassificationSimon Tong, Daphne Koller. 999-1006
- Partial Linear TreesLuís Torgo. 1007-1014
- Mutual Information in Learning Feature TransformationsKari Torkkola, William M. Campbell. 1015-1022
- Local Expert Autoassociators for Anomaly DetectionGeoffrey G. Towell. 1023-1030
- Learning Priorities From Noisy ExamplesGeoffrey G. Towell, Thomas Petsche, Michael R. Miller. 1031-1038
- Hierarchical Unsupervised LearningShivakumar Vaithyanathan, Byron Dom. 1039-1046
- Model Selection Criteria for Learning Belief Nets: An Empirical ComparisonTim Van Allen, Russell Greiner. 1047-1054
- Unpacking Multi-valued Symbolic Features and Classes in Memory-Based Language LearningAntal van den Bosch, Jakub Zavrel. 1055-1062
- Bootstrapping Syntax and Recursion using Alginment-Based LearningMenno van Zaanen. 1063-1070
- An Evolutionary Approach to Evidence-Based Learning of Deterministic Finite AutomataStefan Veeser. 1071-1078
- Locally Weighted Projection Regression: Incremental Real Time Learning in High Dimensional SpaceSethu Vijayakumar, Stefan Schaal. 1079-1086
- A Quantification of Distance Bias Between Evaluation Metrics In ClassificationRicardo Vilalta, Daniel Oblinger. 1087-1094
- Discovering Homogeneous Regions in Spatial Data through CompetitionSlobodan Vucetic, Zoran Obradovic. 1095-1102
- Clustering with Instance-level ConstraintsKiri Wagstaff, Claire Cardie. 1103-1110
- Using Natural Language Processing and discourse Features to Identify Understanding ErrorsMarilyn A. Walker, Jeremy H. Wright, Irene Langkilde. 1111-1118
- Solving the Multiple-Instance Problem: A Lazy Learning ApproachJun Wang, Jean-Daniel Zucker. 1119-1126
- Enhancing the Plausibility of Law Equation DiscoveryTakashi Washio, Hiroshi Motoda, Yuji Niwa. 1127-1134
- Lightweight Rule InductionSholom M. Weiss, Nitin Indurkhya. 1135-1142
- Classification with Multiple Latent Variable Models using Maximum Entropy DiscriminationMachiel Westerdijk, Wim Wiegerinck. 1143-1150
- Multi-Agent Reinforcement Leraning for Traffic Light ControlMarco Wiering. 1151-1158
- The Effect of the Input Density Distribution on Kernel-based ClassifiersChristopher K. I. Williams, Matthias Seeger. 1159-1166
- Combining Multiple Learning Strategies for Effective Cross ValidationYiming Yang, Tom Ault, Thomas Pierce. 1167-1174
- Linear Discriminant TreesOlcay Taner Yildiz, Ethem Alpaydin. 1175-1182
- Improving Short-Text Classification using Unlabeled Data for Classification ProblemsSarah Zelikovitz, Haym Hirsh. 1191-1198
- Induction of Concept Hierarchies from Noisy DataBlaz Zupan, Ivan Bratko, Marko Bohanec, Janez Demsar. 1199-1206
- Crafting Papers on Machine LearningPat Langley. 1207-1216