Abstract is missing.
- Efficient Algorithms for Non-convex Isotonic Regression through Submodular OptimizationFrancis Bach. 1-10 [doi]
- Structure-Aware Convolutional Neural NetworksJianlong Chang, Jie Gu, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, Chunhong Pan. 11-20 [doi]
- Kalman Normalization: Normalizing Internal Representations Across Network LayersGuangrun Wang, Jiefeng Peng, Ping Luo 0002, Xinjiang Wang, Liang Lin. 21-31 [doi]
- HOGWILD!-Gibbs can be PanAccurateConstantinos Daskalakis, Nishanth Dikkala, Siddhartha Jayanti. 32-41 [doi]
- Text-Adaptive Generative Adversarial Networks: Manipulating Images with Natural LanguageSeonghyeon Nam, Yunji Kim, Seon Joo Kim. 42-51 [doi]
- IntroVAE: Introspective Variational Autoencoders for Photographic Image SynthesisHuaibo Huang, Zhihang Li, Ran He, Zhenan Sun, Tieniu Tan. 52-63 [doi]
- Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with \beta-DivergencesJeremias Knoblauch, Jack Jewson, Theodoros Damoulas. 64-75 [doi]
- Adapted Deep Embeddings: A Synthesis of Methods for k-Shot Inductive Transfer LearningTyler R. Scott, Karl Ridgeway, Michael C. Mozer. 76-85 [doi]
- Generalized Inverse Optimization through Online LearningChaosheng Dong, Yiran Chen, Bo Zeng. 86-95 [doi]
- An Off-policy Policy Gradient Theorem Using Emphatic WeightingsEhsan Imani, Eric Graves, Martha White. 96-106 [doi]
- Supervised autoencoders: Improving generalization performance with unsupervised regularizersLei Le, Andrew Patterson, Martha White. 107-117 [doi]
- Visual Object Networks: Image Generation with Disentangled 3D RepresentationsJun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu 0001, Antonio Torralba 0001, Josh Tenenbaum, Bill Freeman. 118-129 [doi]
- Understanding Weight Normalized Deep Neural Networks with Rectified Linear UnitsYixi Xu, Xiao Wang. 130-139 [doi]
- Learning Pipelines with Limited Data and Domain Knowledge: A Study in Parsing Physics ProblemsMrinmaya Sachan, Kumar Avinava Dubey, Tom M. Mitchell, Dan Roth, Eric P. Xing. 140-151 [doi]
- Learning long-range spatial dependencies with horizontal gated recurrent unitsDrew Linsley, Junkyung Kim, Vijay Veerabadran, Charles Windolf, Thomas Serre. 152-164 [doi]
- Joint Sub-bands Learning with Clique Structures for Wavelet Domain Super-ResolutionZhisheng Zhong, Tiancheng Shen, Yibo Yang, Zhouchen Lin, Chao Zhang. 165-175 [doi]
- Fast Similarity Search via Optimal Sparse LiftingWenye Li, Jingwei Mao, Yin Zhang, Shuguang Cui. 176-184 [doi]
- Learning Deep Disentangled Embeddings With the F-Statistic LossKarl Ridgeway, Michael C. Mozer. 185-194 [doi]
- Geometrically Coupled Monte Carlo SamplingMark Rowland, Krzysztof Choromanski, François Chalus, Aldo Pacchiano, Tamás Sarlós, Richard E. Turner, Adrian Weller. 195-205 [doi]
- Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout, and Camera Pose EstimationSiyuan Huang, Siyuan Qi, Yinxue Xiao, Yixin Zhu, Ying Nian Wu, Song Chun Zhu. 206-217 [doi]
- An Efficient Pruning Algorithm for Robust Isotonic RegressionCong Han Lim. 218-227 [doi]
- PAC-learning in the presence of adversariesDaniel Cullina, Arjun Nitin Bhagoji, Prateek Mittal. 228-239 [doi]
- Sparse DNNs with Improved Adversarial RobustnessYiwen Guo, Chao Zhang, Changshui Zhang, Yurong Chen. 240-249 [doi]
- Snap ML: A Hierarchical Framework for Machine LearningCelestine Dünner, Thomas P. Parnell, Dimitrios Sarigiannis, Nikolas Ioannou, Andreea Anghel, Gummadi Ravi, Madhusudanan Kandasamy, Haralampos Pozidis. 250-260 [doi]
- See and Think: Disentangling Semantic Scene CompletionShice Liu, Yu Hu, Yiming Zeng, Qiankun Tang, Beibei Jin, Yinhe Han, Xiaowei Li. 261-272 [doi]
- Chain of Reasoning for Visual Question AnsweringChenfei Wu, Jinlai Liu, Xiaojie Wang, Xuan Dong. 273-283 [doi]
- Sigsoftmax: Reanalysis of the Softmax BottleneckSekitoshi Kanai, Yasuhiro Fujiwara, Yuki Yamanaka, Shuichi Adachi. 284-294 [doi]
- Deep Non-Blind Deconvolution via Generalized Low-Rank ApproximationWenqi Ren, Jiawei Zhang, Lin Ma 0002, Jinshan Pan, Xiaochun Cao, Wangmeng Zuo, Wei Liu, Ming-Hsuan Yang 0001. 295-305 [doi]
- Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMCTolga Birdal, Umut Simsekli, Mustafa Onur Eken, Slobodan Ilic. 306-317 [doi]
- MetaAnchor: Learning to Detect Objects with Customized AnchorsTong Yang, Xiangyu Zhang, Zeming Li, Wenqiang Zhang, Jian Sun. 318-328 [doi]
- Image Inpainting via Generative Multi-column Convolutional Neural NetworksYi Wang, Xin Tao, Xiaojuan Qi, Xiaoyong Shen, Jiaya Jia. 329-338 [doi]
- On Misinformation Containment in Online Social NetworksGuangmo Amo Tong, Ding-Zhu Du, Weili Wu. 339-349 [doi]
- A^2-Nets: Double Attention NetworksYunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng Yan, Jiashi Feng. 350-359 [doi]
- Self-Supervised Generation of Spatial Audio for 360° VideoPedro Morgado, Nuno Vasconcelos, Timothy R. Langlois, Oliver Wang. 360-370 [doi]
- How Many Samples are Needed to Estimate a Convolutional Neural Network?Simon S. Du, Yining Wang, Xiyu Zhai, Sivaraman Balakrishnan, Ruslan R. Salakhutdinov, Aarti Singh. 371-381 [doi]
- Algorithmic Regularization in Learning Deep Homogeneous Models: Layers are Automatically BalancedSimon S. Du, Wei Hu, Jason D. Lee. 382-393 [doi]
- Optimization for Approximate SubmodularityYaron Singer, Avinatan Hassidim. 394-405 [doi]
- (Probably) Concave Graph MatchingHaggai Maron, Yaron Lipman. 406-416 [doi]
- Deep Defense: Training DNNs with Improved Adversarial RobustnessZiang Yan, Yiwen Guo, Changshui Zhang. 417-426 [doi]
- Rest-Katyusha: Exploiting the Solution's Structure via Scheduled Restart SchemesJunqi Tang, Mohammad Golbabaee, Francis Bach, Mike E. Davies. 427-438 [doi]
- Implicit Reparameterization GradientsMikhail Figurnov, Shakir Mohamed, Andriy Mnih. 439-450 [doi]
- Training DNNs with Hybrid Block Floating PointMario Drumond, Tao Lin, Martin Jaggi, Babak Falsafi. 451-461 [doi]
- A Model for Learned Bloom Filters and Optimizing by SandwichingMichael Mitzenmacher. 462-471 [doi]
- Soft-Gated Warping-GAN for Pose-Guided Person Image SynthesisHaoye Dong, Xiaodan Liang, Ke Gong, Hanjiang Lai, Jia Zhu, Jian Yin. 472-482 [doi]
- Deep Functional Dictionaries: Learning Consistent Semantic Structures on 3D Models from FunctionsMinhyuk Sung, Hao Su, Ronald Yu, Leonidas J. Guibas. 483-493 [doi]
- Nonlocal Neural Networks, Nonlocal Diffusion and Nonlocal ModelingYunzhe Tao, Qi Sun, Qiang Du, Wei Liu. 494-504 [doi]
- Are ResNets Provably Better than Linear Predictors?Ohad Shamir. 505-514 [doi]
- Learning to Decompose and Disentangle Representations for Video PredictionJun-Ting Hsieh, Bingbin Liu, De-An Huang, Fei-Fei Li, Juan Carlos Niebles. 515-524 [doi]
- Multi-Task Learning as Multi-Objective OptimizationOzan Sener, Vladlen Koltun. 525-536 [doi]
- Combinatorial Optimization with Graph Convolutional Networks and Guided Tree SearchZhuwen Li, Qifeng Chen, Vladlen Koltun. 537-546 [doi]
- Self-Erasing Network for Integral Object AttentionQibin Hou, Peng-Tao Jiang, Yunchao Wei, Ming-Ming Cheng. 547-557 [doi]
- LinkNet: Relational Embedding for Scene GraphSanghyun Woo, Dahun Kim, Donghyeon Cho, In-So Kweon. 558-568 [doi]
- How to Start Training: The Effect of Initialization and ArchitectureBoris Hanin, David Rolnick. 569-579 [doi]
- Which Neural Net Architectures Give Rise to Exploding and Vanishing Gradients?Boris Hanin. 580-589 [doi]
- Explanations based on the Missing: Towards Contrastive Explanations with Pertinent NegativesAmit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun Chen Tu, Pai-Shun Ting, Karthikeyan Shanmugam, Payel Das. 590-601 [doi]
- HitNet: Hybrid Ternary Recurrent Neural NetworkPeiqi Wang, Xinfeng Xie, Lei Deng, Guoqi Li, Dongsheng Wang, Yuan Xie. 602-612 [doi]
- A Unified Framework for Extensive-Form Game Abstraction with BoundsChristian Kroer, Tuomas Sandholm. 613-624 [doi]
- Removing the Feature Correlation Effect of Multiplicative NoiseZijun Zhang, Yining Zhang, Zongpeng Li. 625-634 [doi]
- Maximum-Entropy Fine Grained ClassificationAbhimanyu Dubey, Otkrist Gupta, Ramesh Raskar, Nikhil Naik. 635-645 [doi]
- On Learning Markov ChainsYi Hao, Alon Orlitsky, Venkatadheeraj Pichapati. 646-655 [doi]
- A Neural Compositional Paradigm for Image CaptioningBo Dai, Sanja Fidler, Dahua Lin. 656-666 [doi]
- Quantifying Learning Guarantees for Convex but Inconsistent SurrogatesKirill Struminsky, Simon Lacoste-Julien, Anton Osokin. 667-675 [doi]
- Dialog-based Interactive Image RetrievalXiaoxiao Guo, Hui Wu, Yu Cheng, Steven Rennie, Gerald Tesauro, Rogério Schmidt Feris. 676-686 [doi]
- SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential EstimatorCong Fang, Chris Junchi Li, Zhouchen Lin, Tong Zhang. 687-697 [doi]
- Are GANs Created Equal? A Large-Scale StudyMario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, Olivier Bousquet. 698-707 [doi]
- Learning Disentangled Joint Continuous and Discrete RepresentationsEmilien Dupont. 708-718 [doi]
- TADAM: Task dependent adaptive metric for improved few-shot learningBoris N. Oreshkin, Pau Rodríguez López, Alexandre Lacoste. 719-729 [doi]
- Do Less, Get More: Streaming Submodular Maximization with SubsamplingMoran Feldman, Amin Karbasi, Ehsan Kazemi 0001. 730-740 [doi]
- Sparse Covariance Modeling in High Dimensions with Gaussian ProcessesRui Li 0002, Kishan KC, Feng Cui, Justin Domke, Anne R. Haake. 741-750 [doi]
- Deep Neural Nets with Interpolating Function as Output ActivationBao Wang, Xiyang Luo, Zhen Li, Wei Zhu, Zuoqiang Shi, Stanley Osher. 751-761 [doi]
- FishNet: A Versatile Backbone for Image, Region, and Pixel Level PredictionShuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, Wanli Ouyang. 762-772 [doi]
- Visual Memory for Robust Path FollowingAshish Kumar, Saurabh Gupta, David F. Fouhey, Sergey Levine, Jitendra Malik. 773-782 [doi]
- KDGAN: Knowledge Distillation with Generative Adversarial NetworksXiaojie Wang, Rui Zhang, Yu Sun 0021, Jianzhong Qi. 783-794 [doi]
- Long short-term memory and Learning-to-learn in networks of spiking neuronsGuillaume Bellec, Darjan Salaj, Anand Subramoney, Robert A. Legenstein, Wolfgang Maass 0001. 795-805 [doi]
- Greedy Hash: Towards Fast Optimization for Accurate Hash Coding in CNNShupeng Su, Chao Zhang, Kai Han, YongHong Tian. 806-815 [doi]
- Informative Features for Model ComparisonWittawat Jitkrittum, Heishiro Kanagawa, Patsorn Sangkloy, James Hays, Bernhard Schölkopf, Arthur Gretton. 816-827 [doi]
- PointCNN: Convolution On X-Transformed PointsYangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, Baoquan Chen. 828-838 [doi]
- Connectionist Temporal Classification with Maximum Entropy RegularizationHu Liu, Sheng Jin, Changshui Zhang. 839-849 [doi]
- Large Margin Deep Networks for ClassificationGamaleldin F. Elsayed, Dilip Krishnan, Hossein Mobahi, Kevin Regan, Samy Bengio. 850-860 [doi]
- Generalizing Graph Matching beyond Quadratic Assignment ModelTianshu Yu, Junchi Yan, Yilin Wang, Wei Liu, Baoxin Li. 861-871 [doi]
- Solving Large Sequential Games with the Excessive Gap TechniqueChristian Kroer, Gabriele Farina, Tuomas Sandholm. 872-882 [doi]
- Discrimination-aware Channel Pruning for Deep Neural NetworksZhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, JunZhou Huang, Jin-Hui Zhu. 883-894 [doi]
- On the Dimensionality of Word EmbeddingZi Yin, Yuanyuan Shen. 895-906 [doi]
- Reinforced Continual LearningJu Xu, Zhanxing Zhu. 907-916 [doi]
- Uncertainty-Aware Attention for Reliable Interpretation and PredictionJay Heo, Haebeom Lee, Saehoon Kim, Juho Lee, Kwang joon Kim, Eunho Yang, Sung Ju Hwang. 917-926 [doi]
- DropMax: Adaptive Variational SoftmaxHaebeom Lee, Juho Lee, Saehoon Kim, Eunho Yang, Sung Ju Hwang. 927-937 [doi]
- Posterior Concentration for Sparse Deep LearningVeronika Rocková, Nicholas Polson. 938-949 [doi]
- A flexible model for training action localization with varying levels of supervisionGuilhem Chéron, Jean-Baptiste Alayrac, Ivan Laptev, Cordelia Schmid. 950-961 [doi]
- A Deep Bayesian Policy Reuse Approach Against Non-Stationary AgentsYan Zheng, Zhaopeng Meng, Jianye Hao, Zongzhang Zhang, Tianpei Yang, Changjie Fan. 962-972 [doi]
- Empirical Risk Minimization in Non-interactive Local Differential Privacy RevisitedDi Wang 0015, Marco Gaboardi, Jinhui Xu 0001. 973-982 [doi]
- Low-shot Learning via Covariance-Preserving Adversarial Augmentation NetworksHang Gao, Zheng Shou, Alireza Zareian, Hanwang Zhang, Shih-Fu Chang. 983-993 [doi]
- Learning semantic similarity in a continuous spaceMichel Deudon. 994-1005 [doi]
- MetaReg: Towards Domain Generalization using Meta-RegularizationYogesh Balaji, Swami Sankaranarayanan, Rama Chellappa. 1006-1016 [doi]
- Boosted Sparse and Low-Rank Tensor RegressionLifang He 0001, Kun Chen 0002, Wanwan Xu, Jiayu Zhou, Fei Wang. 1017-1026 [doi]
- Domain-Invariant Projection Learning for Zero-Shot RecognitionAn Zhao, Mingyu Ding, Jiechao Guan, Zhiwu Lu, Tao Xiang, Ji-Rong Wen. 1027-1038 [doi]
- Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language UnderstandingKexin Yi, Jiajun Wu 0001, Chuang Gan, Antonio Torralba 0001, Pushmeet Kohli, Josh Tenenbaum. 1039-1050 [doi]
- Frequency-Domain Dynamic Pruning for Convolutional Neural NetworksZhenhua Liu, Jizheng Xu, Xiulian Peng, Ruiqin Xiong. 1051-1061 [doi]
- Quadratic Decomposable Submodular Function MinimizationPan Li, Niao He, Olgica Milenkovic. 1062-1072 [doi]
- A Block Coordinate Ascent Algorithm for Mean-Variance OptimizationTengyang Xie, Bo Liu, Yangyang Xu, Mohammad Ghavamzadeh, Yinlam Chow, Daoming Lyu, Daesub Yoon. 1073-1083 [doi]
- \ell_1-regression with Heavy-tailed DistributionsLijun Zhang, Zhi-Hua Zhou. 1084-1094 [doi]
- Neural Nearest Neighbors NetworksTobias Plötz, Stefan Roth 0001. 1095-1106 [doi]
- Efficient nonmyopic batch active searchShali Jiang, Gustavo Malkomes, Matthew Abbott, Benjamin Moseley, Roman Garnett. 1107-1117 [doi]
- A Game-Theoretic Approach to Recommendation Systems with Strategic Content ProvidersOmer Ben-Porat, Moshe Tennenholtz. 1118-1128 [doi]
- Interactive Structure Learning with Structural Query-by-CommitteeChristopher Tosh, Sanjoy Dasgupta. 1129-1139 [doi]
- Global Geometry of Multichannel Sparse Blind Deconvolution on the SphereYanjun Li, Yoram Bresler. 1140-1151 [doi]
- Video-to-Video SynthesisTing-chun Wang, Ming-Yu Liu 0001, Jun-Yan Zhu, Nikolai Yakovenko, Andrew Tao, Jan Kautz, Bryan Catanzaro. 1152-1164 [doi]
- How To Make the Gradients Small Stochastically: Even Faster Convex and Nonconvex SGDZeyuan Allen Zhu. 1165-1175 [doi]
- Synthesize Policies for Transfer and Adaptation across Tasks and EnvironmentsHexiang Hu, Liyu Chen, Boqing Gong, Fei Sha. 1176-1185 [doi]
- Adversarial vulnerability for any classifierAlhussein Fawzi, Hamza Fawzi, Omar Fawzi. 1186-1195 [doi]
- Evolution-Guided Policy Gradient in Reinforcement LearningShauharda Khadka, Kagan Tumer. 1196-1208 [doi]
- Toddler-Inspired Visual Object LearningSven Bambach, David J. Crandall, Linda B. Smith, Chen Yu. 1209-1218 [doi]
- Alternating optimization of decision trees, with application to learning sparse oblique treesMiguel Á. Carreira-Perpiñán, Pooya Tavallali. 1219-1229 [doi]
- FD-GAN: Pose-guided Feature Distilling GAN for Robust Person Re-identificationYixiao Ge, Zhuowan Li, Haiyu Zhao, Guojun Yin, Shuai Yi, Xiaogang Wang, Hongsheng Li. 1230-1241 [doi]
- New Insight into Hybrid Stochastic Gradient Descent: Beyond With-Replacement Sampling and ConvexityPan Zhou, Xiaotong Yuan, Jiashi Feng. 1242-1251 [doi]
- The Lingering of Gradients: How to Reuse Gradients Over TimeZeyuan Allen Zhu, David Simchi-Levi, Xinshang Wang. 1252-1261 [doi]
- Unsupervised Learning of View-invariant Action RepresentationsJunnan Li, Yongkang Wong, Qi Zhao, Mohan S. Kankanhalli. 1262-1272 [doi]
- Fairness Behind a Veil of Ignorance: A Welfare Analysis for Automated Decision MakingHoda Heidari, Claudio Ferrari, Krishna P. Gummadi, Andreas Krause. 1273-1283 [doi]
- Global Gated Mixture of Second-order Pooling for Improving Deep Convolutional Neural NetworksQilong Wang, Zilin Gao, Jiangtao Xie, Wangmeng Zuo, Peihua Li. 1284-1293 [doi]
- Image-to-image translation for cross-domain disentanglementAbel Gonzalez-Garcia, Joost van de Weijer, Yoshua Bengio. 1294-1305 [doi]
- Gradient Sparsification for Communication-Efficient Distributed OptimizationJianqiao Wangni, Jialei Wang, Ji Liu, Tong Zhang. 1306-1316 [doi]
- Revisiting Multi-Task Learning with ROCK: a Deep Residual Auxiliary Block for Visual DetectionTaylor Mordan, Nicolas Thome, Gilles Henaff, Matthieu Cord. 1317-1329 [doi]
- Adaptive Online Learning in Dynamic EnvironmentsLijun Zhang, Shiyin Lu, Zhi-Hua Zhou. 1330-1340 [doi]
- FRAGE: Frequency-Agnostic Word RepresentationChengYue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang 0001, Tie-Yan Liu. 1341-1352 [doi]
- Generative Neural Machine TranslationHarshil Shah, David Barber. 1353-1362 [doi]
- Found Graph Data and Planted Vertex CoversAustin R. Benson, Jon M. Kleinberg. 1363-1374 [doi]
- Joint Active Feature Acquisition and Classification with Variable-Size Set EncodingHajin Shim, Sung Ju Hwang, Eunho Yang. 1375-1385 [doi]
- Regularization Learning Networks: Deep Learning for Tabular DatasetsIra Shavitt, Eran Segal. 1386-1396 [doi]
- Multitask Boosting for Survival Analysis with Competing RisksAlexis Bellot, Mihaela van der Schaar. 1397-1406 [doi]
- Geometry Based Data GenerationOfir Lindenbaum, Jay S. Stanley III, Guy Wolf, Smita Krishnaswamy. 1407-1418 [doi]
- SLAYER: Spike Layer Error Reassignment in TimeSumit Bam Shrestha, Garrick Orchard. 1419-1428 [doi]
- On Oracle-Efficient PAC RL with Rich ObservationsChristoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford 0001, Robert E. Schapire. 1429-1439 [doi]
- Gradient Descent for Spiking Neural NetworksDongsung Huh, Terrence J. Sejnowski. 1440-1450 [doi]
- Generalizing Tree Probability Estimation via Bayesian NetworksCheng Zhang, Frederick A. Matsen IV. 1451-1460 [doi]
- Where Do You Think You're Going?: Inferring Beliefs about Dynamics from BehaviorSiddharth Reddy, Anca D. Dragan, Sergey Levine. 1461-1472 [doi]
- Designing by Training: Acceleration Neural Network for Fast High-Dimensional ConvolutionLongquan Dai, Liang Tang, Yuan Xie 0006, Jinhui Tang. 1473-1482 [doi]
- Understanding the Role of Adaptivity in Machine Teaching: The Case of Version Space LearnersYuxin Chen, Adish Singla, Oisin Mac Aodha, Pietro Perona, Yisong Yue. 1483-1493 [doi]
- A loss framework for calibrated anomaly detection1494-1504 [doi]
- PacGAN: The power of two samples in generative adversarial networksZinan Lin, Ashish Khetan, Giulia C. Fanti, Sewoong Oh. 1505-1514 [doi]
- Variational Memory Encoder-DecoderHung Le, Truyen Tran 0001, Thin Nguyen, Svetha Venkatesh. 1515-1525 [doi]
- Stochastic Composite Mirror Descent: Optimal Bounds with High ProbabilitiesYunwen Lei, Ke Tang. 1526-1536 [doi]
- Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report GenerationYuan Li, Xiaodan Liang, Zhiting Hu, Eric P. Xing. 1537-1547 [doi]
- Overcoming Language Priors in Visual Question Answering with Adversarial RegularizationSainandan Ramakrishnan, Aishwarya Agrawal, Stefan Lee. 1548-1558 [doi]
- Hybrid Knowledge Routed Modules for Large-scale Object DetectionChenhan Jiang, Hang Xu, Xiaodan Liang, Liang Lin. 1559-1570 [doi]
- Bilinear Attention NetworksJin-Hwa Kim, Jaehyun Jun, Byoung-Tak Zhang. 1571-1581 [doi]
- Parsimonious Quantile Regression of Financial Asset Tail Dynamics via Sequential LearningXing Yan, Weizhong Zhang, Lin Ma, Wei Liu, Qi Wu. 1582-1592 [doi]
- Multi-Class Learning: From Theory to AlgorithmJian Li, Yong Liu, Rong Yin, Hua Zhang, Lizhong Ding, Weiping Wang. 1593-1602 [doi]
- Multivariate Time Series Imputation with Generative Adversarial NetworksYonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, Xiaojie Yuan. 1603-1614 [doi]
- Learning Versatile Filters for Efficient Convolutional Neural NetworksYunhe Wang, Chang Xu, Chunjing Xu, Chao Xu 0006, Dacheng Tao. 1615-1625 [doi]
- Accelerated Stochastic Matrix Inversion: General Theory and Speeding up BFGS Rules for Faster Second-Order OptimizationRobert M. Gower, Filip Hanzely, Peter Richtárik, Sebastian U. Stich. 1626-1636 [doi]
- DifNet: Semantic Segmentation by Diffusion NetworksPeng Jiang, Fanglin Gu, Yunhai Wang, Changhe Tu, Baoquan Chen. 1637-1646 [doi]
- Conditional Adversarial Domain AdaptationMingsheng Long, Zhangjie Cao, Jianmin Wang 0001, Michael I. Jordan. 1647-1657 [doi]
- Neighbourhood Consensus NetworksIgnacio Rocco, Mircea Cimpoi, Relja Arandjelovic, Akihiko Torii, Tomás Pajdla, Josef Sivic. 1658-1669 [doi]
- Relating Leverage Scores and Density using Regularized Christoffel FunctionsEdouard Pauwels, Francis Bach, Jean-Philippe Vert. 1670-1679 [doi]
- Non-Local Recurrent Network for Image RestorationDing Liu, Bihan Wen, Yuchen Fan, Chen Change Loy, Thomas S. Huang. 1680-1689 [doi]
- Bayesian Semi-supervised Learning with Graph Gaussian ProcessesYin Cheng Ng, Nicolò Colombo, Ricardo Silva. 1690-1701 [doi]
- Foreground Clustering for Joint Segmentation and Localization in Videos and ImagesAbhishek Sharma. 1702-1711 [doi]
- Video Prediction via Selective SamplingJingwei Xu, Bingbing Ni, Xiaokang Yang. 1712-1722 [doi]
- Distilled Wasserstein Learning for Word Embedding and Topic ModelingHongteng Xu, Wenlin Wang, Wei Liu, Lawrence Carin. 1723-1732 [doi]
- Learning to Exploit Stability for 3D Scene ParsingYilun Du, Zhijian Liu, Hector Basevi, Ales Leonardis, Bill Freeman, Josh Tenenbaum, Jiajun Wu 0001. 1733-1743 [doi]
- Neural Guided Constraint Logic Programming for Program SynthesisLisa Zhang, Gregory Rosenblatt, Ethan Fetaya, Renjie Liao, William E. Byrd, Matthew Might, Raquel Urtasun, Richard S. Zemel. 1744-1753 [doi]
- Genetic-Gated Networks for Deep Reinforcement LearningSimyung Chang, John Yang, Jaeseok Choi, Nojun Kwak. 1754-1763 [doi]
- Fighting Boredom in Recommender Systems with Linear Reinforcement LearningRomain Warlop, Alessandro Lazaric, Jérémie Mary. 1764-1773 [doi]
- Enhancing the Accuracy and Fairness of Human Decision MakingIsabel Valera, Adish Singla, Manuel Gomez-Rodriguez. 1774-1783 [doi]
- Temporal Regularization for Markov Decision ProcessPierre Thodoroff, Audrey Durand, Joelle Pineau, Doina Precup. 1784-1794 [doi]
- The Pessimistic Limits and Possibilities of Margin-based Losses in Semi-supervised LearningJesse H. Krijthe, Marco Loog. 1795-1804 [doi]
- Simple random search of static linear policies is competitive for reinforcement learningHoria Mania, Aurelia Guy, Benjamin Recht. 1805-1814 [doi]
- Generating Informative and Diverse Conversational Responses via Adversarial Information MaximizationYizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan, Xiujun Li, Chris Brockett, Bill Dolan. 1815-1825 [doi]
- Entropy and mutual information in models of deep neural networksMarylou Gabrié, Andre Manoel, Clément Luneau, Jean Barbier, Nicolas Macris, Florent Krzakala, Lenka Zdeborová. 1826-1836 [doi]
- Collaborative Learning for Deep Neural NetworksGuocong Song, Wei Chai. 1837-1846 [doi]
- High Dimensional Linear Regression using Lattice Basis ReductionIlias Zadik, David Gamarnik. 1847-1857 [doi]
- Symbolic Graph Reasoning Meets ConvolutionsXiaodan Liang, Zhiting Hu, Hao Zhang, Liang Lin, Eric P. Xing. 1858-1868 [doi]
- DVAE#: Discrete Variational Autoencoders with Relaxed Boltzmann PriorsArash Vahdat, Evgeny Andriyash, William G. Macready. 1869-1878 [doi]
- Partially-Supervised Image CaptioningPeter Anderson 0001, Stephen Gould, Mark Johnson 0001. 1879-1890 [doi]
- 3D-Aware Scene Manipulation via Inverse GraphicsShunyu Yao, Tzu-Ming Harry Hsu, Jun-Yan Zhu, Jiajun Wu 0001, Antonio Torralba 0001, Bill Freeman, Josh Tenenbaum. 1891-1902 [doi]
- Random Feature Stein DiscrepanciesJonathan H. Huggins, Lester Mackey. 1903-1913 [doi]
- Distributed Stochastic Optimization via Adaptive SGDAshok Cutkosky, Róbert Busa-Fekete. 1914-1923 [doi]
- Precision and Recall for Time SeriesNesime Tatbul, Tae-Jun Lee, Stan Zdonik, Mejbah Alam, Justin Gottschlich. 1924-1934 [doi]
- Deep Attentive Tracking via Reciprocative LearningShi Pu, Yibing Song, Chao Ma 0004, Honggang Zhang, Ming-Hsuan Yang 0001. 1935-1945 [doi]
- Virtual Class Enhanced Discriminative Embedding LearningBinghui Chen, Weihong Deng, Haifeng Shen. 1946-1956 [doi]
- Attention in Convolutional LSTM for Gesture RecognitionLiang Zhang 0010, Guangming Zhu, Lin Mei, Peiyi Shen, Syed Afaq Ali Shah, Mohammed Bennamoun. 1957-1966 [doi]
- Pelee: A Real-Time Object Detection System on Mobile DevicesJun Wang, Tanner A. Bohn, Charles X. Ling. 1967-1976 [doi]
- Universal Growth in Production EconomiesSimina Brânzei, Ruta Mehta, Noam Nisan. 1975 [doi]
- Bayesian Model Selection Approach to Boundary Detection with Non-Local PriorsFei Jiang, Guosheng Yin, Francesca Dominici. 1978-1987 [doi]
- Efficient Stochastic Gradient Hard ThresholdingPan Zhou, Xiaotong Yuan, Jiashi Feng. 1988-1997 [doi]
- SplineNets: Continuous Neural Decision GraphsCem Keskin, Shahram Izadi. 1998-2008 [doi]
- Generalized Zero-Shot Learning with Deep Calibration NetworkShichen Liu, Mingsheng Long, Jianmin Wang 0001, Michael I. Jordan. 2009-2019 [doi]
- Neural Architecture Search with Bayesian Optimisation and Optimal TransportKirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabás Póczos, Eric P. Xing. 2020-2029 [doi]
- Embedding Logical Queries on Knowledge GraphsWilliam L. Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, Jure Leskovec. 2030-2041 [doi]
- Learning Optimal Reserve Price against Non-myopic BiddersJinyan Liu, Zhiyi Huang 0002, Xiangning Wang. 2042-2052 [doi]
- Sequential Context Encoding for Duplicate RemovalLu Qi, Shu Liu, Jianping Shi, Jiaya Jia. 2053-2062 [doi]
- Discovery of Latent 3D Keypoints via End-to-end Geometric ReasoningSupasorn Suwajanakorn, Noah Snavely, Jonathan J. Tompson, Mohammad Norouzi 0002. 2063-2074 [doi]
- Nonparametric learning from Bayesian models with randomized objective functionsSimon Lyddon, Stephen Walker, Chris C. Holmes. 2075-2085 [doi]
- SEGA: Variance Reduction via Gradient SketchingFilip Hanzely, Konstantin Mishchenko, Peter Richtárik. 2086-2097 [doi]
- Automatic Program Synthesis of Long Programs with a Learned Garbage CollectorAmit Zohar, Lior Wolf. 2098-2107 [doi]
- One-Shot Unsupervised Cross Domain TranslationSagie Benaim, Lior Wolf. 2108-2118 [doi]
- Regularizing by the Variance of the Activations' Sample-VariancesEtai Littwin, Lior Wolf. 2119-2129 [doi]
- Overlapping Clustering Models, and One (class) SVM to Bind Them AllXueyu Mao 0001, Purnamrita Sarkar, Deepayan Chakrabarti. 2130-2140 [doi]
- Algorithmic Linearly Constrained Gaussian ProcessesMarkus Lange-Hegermann. 2141-2152 [doi]
- DeepExposure: Learning to Expose Photos with Asynchronously Reinforced Adversarial LearningRunsheng Yu, Wenyu Liu, Yasen Zhang, Zhi Qu, Deli Zhao, Bo Zhang. 2153-2163 [doi]
- Norm matters: efficient and accurate normalization schemes in deep networksElad Hoffer, Ron Banner, Itay Golan, Daniel Soudry. 2164-2174 [doi]
- Dual Principal Component Pursuit: Improved Analysis and Efficient AlgorithmsZhihui Zhu, Yifan Wang, Daniel P. Robinson, Daniel Q. Naiman, René Vidal, Manolis C. Tsakiris. 2175-2185 [doi]
- MULAN: A Blind and Off-Grid Method for Multichannel Echo RetrievalHelena Peic Tukuljac, Antoine Deleforge, Rémi Gribonval. 2186-2196 [doi]
- Mixture Matrix CompletionDaniel L. Pimentel-Alarcón. 2197-2207 [doi]
- Trajectory Convolution for Action RecognitionYue Zhao, Yuanjun Xiong, Dahua Lin. 2208-2219 [doi]
- The Description Length of Deep Learning modelsLéonard Blier, Yann Ollivier. 2220-2230 [doi]
- A Smoothed Analysis of the Greedy Algorithm for the Linear Contextual Bandit ProblemSampath Kannan, Jamie H. Morgenstern, Aaron Roth, Bo Waggoner, Zhiwei Steven Wu. 2231-2241 [doi]
- Revisiting Decomposable Submodular Function Minimization with Incidence RelationsPan Li, Olgica Milenkovic. 2242-2252 [doi]
- A Practical Algorithm for Distributed Clustering and Outlier DetectionJiecao Chen, Erfan Sadeqi Azer, Qin Zhang 0001. 2253-2262 [doi]
- Learning to Reconstruct Shapes from Unseen ClassesXiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Josh Tenenbaum, Bill Freeman, Jiajun Wu 0001. 2263-2274 [doi]
- BourGAN: Generative Networks with Metric EmbeddingsChang Xiao, Peilin Zhong, Changxi Zheng. 2275-2286 [doi]
- Smoothed analysis of the low-rank approach for smooth semidefinite programsThomas Pumir, Samy Jelassi, Nicolas Boumal. 2287-2296 [doi]
- Zero-Shot Transfer with Deictic Object-Oriented Representation in Reinforcement LearningOfir Marom, Benjamin Rosman. 2297-2305 [doi]
- Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolateMikhail Belkin, Daniel J. Hsu, Partha Mitra. 2306-2317 [doi]
- Breaking the Span Assumption Yields Fast Finite-Sum MinimizationRobert Hannah, Yanli Liu, Daniel O'Connor, Wotao Yin. 2318-2327 [doi]
- Structured Local Minima in Sparse Blind DeconvolutionYuqian Zhang, Han-Wen Kuo, John Wright. 2328-2337 [doi]
- GIANT: Globally Improved Approximate Newton Method for Distributed OptimizationShusen Wang, Farbod Roosta-Khorasani, Peng Xu, Michael W. Mahoney. 2338-2348 [doi]
- Modelling sparsity, heterogeneity, reciprocity and community structure in temporal interaction dataXenia Miscouridou, Francois Caron, Yee Whye Teh. 2349-2358 [doi]
- Non-monotone Submodular Maximization in Exponentially Fewer IterationsEric Balkanski, Adam Breuer, Yaron Singer. 2359-2370 [doi]
- MetaGAN: An Adversarial Approach to Few-Shot LearningRuixiang Zhang, Tong Che, Zoubin Ghahramani, Yoshua Bengio, Yangqiu Song. 2371-2380 [doi]
- Local Differential Privacy for Evolving DataMatthew Joseph, Aaron Roth, Jonathan Ullman, Bo Waggoner. 2381-2390 [doi]
- Gaussian Process Conditional Density EstimationVincent Dutordoir, Hugh Salimbeni, James Hensman, Marc Peter Deisenroth. 2391-2401 [doi]
- Meta-Gradient Reinforcement LearningZhongwen Xu, Hado P. van Hasselt, David Silver. 2402-2413 [doi]
- Modular Networks: Learning to Decompose Neural ComputationLouis Kirsch, Julius Kunze, David Barber. 2414-2423 [doi]
- Learning to Navigate in Cities Without a MapPiotr Mirowski, Matthew Koichi Grimes, Mateusz Malinowski, Karl Moritz Hermann, Keith Anderson, Denis Teplyashin, Karen Simonyan, Koray Kavukcuoglu, Andrew Zisserman, Raia Hadsell. 2424-2435 [doi]
- Query Complexity of Bayesian Private LearningKuang Xu. 2436-2445 [doi]
- A theory on the absence of spurious solutions for nonconvex and nonsmooth optimizationCédric Josz, Yi Ouyang, Richard Y. Zhang, Javad Lavaei, Somayeh Sojoudi. 2446-2454 [doi]
- Recurrent World Models Facilitate Policy EvolutionDavid Ha, Jürgen Schmidhuber. 2455-2467 [doi]
- Ridge Regression and Provable Deterministic Ridge Leverage Score SamplingShannon R. McCurdy. 2468-2477 [doi]
- Wasserstein Variational InferenceLuca Ambrogioni, Umut Güçlü, Yagmur Güçlütürk, Max Hinne, Marcel A. J. van Gerven, Eric Maris. 2478-2487 [doi]
- How Does Batch Normalization Help Optimization?Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, Aleksander Madry. 2488-2498 [doi]
- Verifiable Reinforcement Learning via Policy ExtractionOsbert Bastani, Yewen Pu, Armando Solar-Lezama. 2499-2509 [doi]
- Leveraged volume sampling for linear regressionMichal Derezinski, Manfred K. Warmuth, Daniel J. Hsu. 2510-2519 [doi]
- Model Agnostic Supervised Local ExplanationsGregory Plumb, Denali Molitor, Ameet S. Talwalkar. 2520-2529 [doi]
- A Linear Speedup Analysis of Distributed Deep Learning with Sparse and Quantized CommunicationPeng Jiang, Gagan Agrawal. 2530-2541 [doi]
- Active Learning for Non-Parametric Regression Using Purely Random TreesJack Goetz, Ambuj Tewari, Paul Zimmerman. 2542-2551 [doi]
- Tree-to-tree Neural Networks for Program TranslationXinyun Chen, Chang Liu, Dawn Song. 2552-2562 [doi]
- Batch-Instance Normalization for Adaptively Style-Invariant Neural NetworksHyeonseob Nam, Hyo-Eun Kim. 2563-2572 [doi]
- Structural Causal Bandits: Where to Intervene?Sanghack Lee, Elias Bareinboim. 2573-2583 [doi]
- Answerer in Questioner's Mind: Information Theoretic Approach to Goal-Oriented Visual DialogSang-Woo Lee, Yu-Jung Heo, Byoung-Tak Zhang. 2584-2594 [doi]
- A Unified Feature Disentangler for Multi-Domain Image Translation and ManipulationAlexander H. Liu, Yen-Cheng Liu, Yu-Ying Yeh, Yu-Chiang Frank Wang. 2595-2604 [doi]
- Online Learning with an Unknown Fairness MetricStephen Gillen, Christopher Jung, Michael J. Kearns, Aaron Roth. 2605-2614 [doi]
- Isolating Sources of Disentanglement in Variational AutoencodersTian Qi Chen, Xuechen Li, Roger B. Grosse, David K. Duvenaud. 2615-2625 [doi]
- Contextual bandits with surrogate losses: Margin bounds and efficient algorithmsDylan J. Foster, Akshay Krishnamurthy. 2626-2637 [doi]
- Representation Learning for Treatment Effect Estimation from Observational DataLiuyi Yao, Sheng Li 0001, Yaliang Li, Mengdi Huai, Jing Gao, Aidong Zhang. 2638-2648 [doi]
- Representation Balancing MDPs for Off-policy Policy EvaluationYao Liu, Omer Gottesman, Aniruddh Raghu, Matthieu Komorowski, Aldo A. Faisal, Finale Doshi-Velez, Emma Brunskill. 2649-2658 [doi]
- Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question AnsweringMedhini Narasimhan, Svetlana Lazebnik, Alexander G. Schwing. 2659-2670 [doi]
- Causal Discovery from Discrete Data using Hidden Compact RepresentationRuichu Cai, Jie Qiao, Kun Zhang, Zhenjie Zhang, Zhifeng Hao. 2671-2679 [doi]
- Natasha 2: Faster Non-Convex Optimization Than SGDZeyuan Allen Zhu. 2680-2691 [doi]
- Minimax Statistical Learning with Wasserstein distancesJaeho Lee, Maxim Raginsky. 2692-2701 [doi]
- Provable Variational Inference for Constrained Log-Submodular ModelsJosip Djolonga, Stefanie Jegelka, Andreas Krause 0001. 2702-2712 [doi]
- Learning Hierarchical Semantic Image Manipulation through Structured RepresentationsSeunghoon Hong, Xinchen Yan, Thomas S. Huang, Honglak Lee. 2713-2723 [doi]
- Processing of missing data by neural networksMarek Smieja, Lukasz Struski, Jacek Tabor, Bartosz Zielinski 0001, Przemyslaw Spurek. 2724-2734 [doi]
- Safe Active Learning for Time-Series Modeling with Gaussian ProcessesChristoph Zimmer, Mona Meister, Duy Nguyen-Tuong. 2735-2744 [doi]
- Optimal Algorithms for Non-Smooth Distributed Optimization in NetworksKevin Scaman, Francis Bach, Sébastien Bubeck, Laurent Massoulié, Yin Tat Lee. 2745-2754 [doi]
- Computing Higher Order Derivatives of Matrix and Tensor ExpressionsSören Laue, Matthias Mitterreiter, Joachim Giesen. 2755-2764 [doi]
- Paraphrasing Complex Network: Network Compression via Factor TransferJangho Kim, Seonguk Park, Nojun Kwak. 2765-2774 [doi]
- Analytic solution and stationary phase approximation for the Bayesian lasso and elastic netTom Michoel. 2775-2785 [doi]
- Demystifying excessively volatile human learning: A Bayesian persistent prior and a neural approximationChaitanya Ryali, Gautam Reddy, Angela J. Yu. 2786-2795 [doi]
- Empirical Risk Minimization Under Fairness ConstraintsMichele Donini, Luca Oneto, Shai Ben-David, John Shawe-Taylor, Massimiliano Pontil. 2796-2806 [doi]
- Unsupervised Learning of Shape and Pose with Differentiable Point CloudsEldar Insafutdinov, Alexey Dosovitskiy. 2807-2817 [doi]
- Continuous-time Value Function Approximation in Reproducing Kernel Hilbert SpacesMotoya Ohnishi, Masahiro Yukawa, Mikael Johansson, Masashi Sugiyama. 2818-2829 [doi]
- Gradient Descent Meets Shift-and-Invert Preconditioning for Eigenvector ComputationZhiqiang Xu. 2830-2839 [doi]
- Factored BanditsJulian Zimmert, Yevgeny Seldin. 2840-2849 [doi]
- Delta-encoder: an effective sample synthesis method for few-shot object recognitionEli Schwartz, Leonid Karlinsky, Joseph Shtok, Sivan Harary, Mattias Marder, Abhishek Kumar, Rogério Schmidt Feris, Raja Giryes, Alexander M. Bronstein. 2850-2860 [doi]
- Metric on Nonlinear Dynamical Systems with Perron-Frobenius OperatorsIsao Ishikawa, Keisuke Fujii, Masahiro Ikeda, Yuka Hashimoto, Yoshinobu Kawahara. 2861-2871 [doi]
- Learning a High Fidelity Pose Invariant Model for High-resolution Face FrontalizationJie Cao, Yibo Hu, Hongwen Zhang, Ran He, Zhenan Sun. 2872-2882 [doi]
- Mirrored Langevin DynamicsYa-Ping Hsieh, Ali Kavis, Paul Rolland, Volkan Cevher. 2883-2892 [doi]
- Moonshine: Distilling with Cheap ConvolutionsElliot J. Crowley, Gavin Gray, Amos J. Storkey. 2893-2903 [doi]
- Stochastic Cubic Regularization for Fast Nonconvex OptimizationNilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, Michael I. Jordan. 2904-2913 [doi]
- Adaptation to Easy Data in Prediction with Limited AdviceTobias Sommer Thune, Yevgeny Seldin. 2914-2923 [doi]
- Differentially Private Bayesian Inference for Exponential FamiliesGarrett Bernstein, Daniel R. Sheldon. 2924-2934 [doi]
- Playing hard exploration games by watching YouTubeYusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang 0001, Nando de Freitas. 2935-2945 [doi]
- Dialog-to-Action: Conversational Question Answering Over a Large-Scale Knowledge BaseDaya Guo, Duyu Tang, Nan Duan, Ming Zhou, Jian Yin. 2946-2955 [doi]
- Norm-Ranging LSH for Maximum Inner Product SearchXiao Yan, Jinfeng Li, Xinyan Dai, Hongzhi Chen, James Cheng. 2956-2965 [doi]
- Optimization over Continuous and Multi-dimensional Decisions with Observational DataDimitris Bertsimas, Christopher McCord. 2966-2974 [doi]
- Fast Estimation of Causal Interactions using Wold ProcessesFlavio Figueiredo, Guilherme Resende Borges, Pedro O. S. Vaz de Melo, Renato Assunção. 2975-2986 [doi]
- When do random forests fail?Cheng Tang, Damien Garreau, Ulrike von Luxburg. 2987-2997 [doi]
- Near Optimal Exploration-Exploitation in Non-Communicating Markov Decision ProcessesRonan Fruit, Matteo Pirotta, Alessandro Lazaric. 2998-3008 [doi]
- Optimistic optimization of a BrownianJean-Bastien grill, Michal Valko, Rémi Munos. 3009-3018 [doi]
- Practical Methods for Graph Two-Sample TestingDebarghya Ghoshdastidar, Ulrike von Luxburg. 3019-3028 [doi]
- NAIS-Net: Stable Deep Networks from Non-Autonomous Differential EquationsMarco Ciccone, Marco Gallieri, Jonathan Masci, Christian Osendorfer, Faustino J. Gomez. 3029-3039 [doi]
- On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal TransportLénaïc Chizat, Francis Bach. 3040-3050 [doi]
- Constructing Deep Neural Networks by Bayesian Network Structure LearningRaanan Y. Yehezkel Rohekar, Shami Nisimov, Yaniv Gurwicz, Guy Koren, Gal Novik. 3051-3062 [doi]
- Weakly Supervised Dense Event Captioning in VideosXuguang Duan, Wen-bing Huang, Chuang Gan, Jingdong Wang, Wenwu Zhu 0001, JunZhou Huang. 3063-3073 [doi]
- Faithful Inversion of Generative Models for Effective Amortized InferenceStefan Webb, Adam Golinski, Robert Zinkov, Siddharth Narayanaswamy, Tom Rainforth, Yee Whye Teh, Frank Wood. 3074-3084 [doi]
- From Stochastic Planning to Marginal MAPHao Cui, Radu Marinescu, Roni Khardon. 3085-3095 [doi]
- On Binary Classification in Extreme RegionsHamid Jalalzai, Stéphan Clémençon, Anne Sabourin. 3096-3104 [doi]
- Near-Optimal Policies for Dynamic Multinomial Logit Assortment Selection ModelsYining Wang, Xi Chen, Yuan Zhou. 3105-3114 [doi]
- Q-learning with Nearest NeighborsDevavrat Shah, Qiaomin Xie. 3115-3125 [doi]
- Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex OptimizationPan Xu, Jinghui Chen, Difan Zou, Quanquan Gu. 3126-3137 [doi]
- Asymptotic optimality of adaptive importance samplingFrançois Portier, Bernard Delyon. 3138-3148 [doi]
- Learning latent variable structured prediction models with Gaussian perturbationsKevin Bello, Jean Honorio. 3149-3159 [doi]
- The Nearest Neighbor Information Estimator is Adaptively Near Minimax Rate-OptimalJiantao Jiao, Weihao Gao, Yanjun Han. 3160-3171 [doi]
- Deep Reinforcement Learning of Marked Temporal Point ProcessesUtkarsh Upadhyay, Abir De, Manuel Gomez-Rodriguez. 3172-3182 [doi]
- Evidential Deep Learning to Quantify Classification UncertaintyMurat Sensoy, Lance M. Kaplan, Melih Kandemir. 3183-3193 [doi]
- Parsimonious Bayesian deep networksMingyuan Zhou. 3194-3204 [doi]
- Single-Agent Policy Tree Search With GuaranteesLaurent Orseau, Levi Lelis, Tor Lattimore, Theophane Weber. 3205-3215 [doi]
- Semi-crowdsourced Clustering with Deep Generative ModelsYucen Luo, Tian Tian 0001, Jiaxin Shi, Jun Zhu 0001, Bo Zhang. 3216-3226 [doi]
- The committee machine: Computational to statistical gaps in learning a two-layers neural networkBenjamin Aubin, Antoine Maillard, Jean Barbier, Florent Krzakala, Nicolas Macris, Lenka Zdeborová. 3227-3238 [doi]
- Realistic Evaluation of Deep Semi-Supervised Learning AlgorithmsAvital Oliver, Augustus Odena, Colin A. Raffel, Ekin Dogus Cubuk, Ian J. Goodfellow. 3239-3250 [doi]
- Contextual Combinatorial Multi-armed Bandits with Volatile Arms and Submodular RewardLixing Chen, Jie Xu, Zhuo Lu. 3251-3260 [doi]
- Training deep learning based denoisers without ground truth dataShakarim Soltanayev, Se Young Chun. 3261-3271 [doi]
- Re-evaluating evaluationDavid Balduzzi, Karl Tuyls, Julien Pérolat, Thore Graepel. 3272-3283 [doi]
- Deep, complex, invertible networks for inversion of transmission effects in multimode optical fibresOisín Moran, Piergiorgio Caramazza, Daniele Faccio, Roderick Murray-Smith. 3284-3295 [doi]
- Multivariate Convolutional Sparse Coding for Electromagnetic Brain SignalsTom Dupré la Tour, Thomas Moreau, Mainak Jas, Alexandre Gramfort. 3296-3306 [doi]
- Data-Efficient Hierarchical Reinforcement LearningOfir Nachum, Shixiang Gu, Honglak Lee, Sergey Levine. 3307-3317 [doi]
- Speaker-Follower Models for Vision-and-Language NavigationDaniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-Philippe Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, Trevor Darrell. 3318-3329 [doi]
- Inequity aversion improves cooperation in intertemporal social dilemmasEdward Hughes, Joel Z. Leibo, Matthew Phillips, Karl Tuyls, Edgar A. Duéñez-Guzmán, Antonio García Castañeda, Iain Dunning, Tina Zhu, Kevin R. McKee, Raphael Koster, Heather Roff, Thore Graepel. 3330-3340 [doi]
- Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization BoundsDavid Reeb, Andreas Doerr, Sebastian Gerwinn, Barbara Rakitsch. 3341-3351 [doi]
- Probabilistic Matrix Factorization for Automated Machine LearningNicoló Fusi, Rishit Sheth, Melih Elibol. 3352-3361 [doi]
- Stochastic Spectral and Conjugate Descent MethodsDmitry Kovalev, Peter Richtárik, Eduard Gorbunov, Elnur Gasanov. 3362-3371 [doi]
- Recurrent Relational NetworksRasmus Berg Palm, Ulrich Paquet, Ole Winther. 3372-3382 [doi]
- But How Does It Work in Theory? Linear SVM with Random FeaturesYitong Sun, Anna C. Gilbert, Ambuj Tewari. 3383-3392 [doi]
- Learning to Optimize Tensor ProgramsTianQi Chen, Lianmin Zheng, Eddie Q. Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin, Arvind Krishnamurthy. 3393-3404 [doi]
- Boosting Black Box Variational InferenceFrancesco Locatello, Gideon Dresdner, Rajiv Khanna, Isabel Valera, Gunnar Rätsch. 3405-3415 [doi]
- Nearly tight sample complexity bounds for learning mixtures of Gaussians via sample compression schemesHassan Ashtiani, Shai Ben-David, Nicholas J. A. Harvey, Christopher Liaw, Abbas Mehrabian, Yaniv Plan. 3416-3425 [doi]
- Actor-Critic Policy Optimization in Partially Observable Multiagent EnvironmentsSriram Srinivasan, Marc Lanctot, Vinícius Flores Zambaldi, Julien Pérolat, Karl Tuyls, Rémi Munos, Michael Bowling. 3426-3439 [doi]
- Step Size Matters in Deep LearningKamil Nar, Shankar Sastry. 3440-3448 [doi]
- Derivative Estimation in Random DesignYu Liu, Kris De Brabanter. 3449-3458 [doi]
- Zeroth-order (Non)-Convex Stochastic Optimization via Conditional Gradient and Gradient UpdatesKrishnakumar Balasubramanian, Saeed Ghadimi. 3459-3468 [doi]
- Latent Gaussian Activity Propagation: Using Smoothness and Structure to Separate and Localize Sounds in Large Noisy EnvironmentsDaniel Johnson, Daniel Gorelik, Ross E. Mawhorter, Kyle Suver, Weiqing Gu, Steven Xing, Cody Gabriel, Peter Sankhagowit. 3469-3478 [doi]
- Hybrid-MST: A Hybrid Active Sampling Strategy for Pairwise Preference AggregationJing Li 0026, Rafal Mantiuk, Junle Wang, Suiyi Ling, Patrick Le Callet. 3479-3489 [doi]
- Infinite-Horizon Gaussian ProcessesArno Solin, James Hensman, Richard E. Turner. 3490-3499 [doi]
- Dimensionality Reduction for Stationary Time Series via Stochastic Nonconvex OptimizationMinshuo Chen, Lin Yang, Mengdi Wang, Tuo Zhao. 3500-3510 [doi]
- Sequence-to-Segment Networks for Segment DetectionZijun Wei, Boyu Wang, Minh Hoai Nguyen, Jianming Zhang, Zhe L. Lin, Xiaohui Shen, Radomír Mech, Dimitris Samaras. 3511-3520 [doi]
- Scaling the Poisson GLM to massive neural datasets through polynomial approximationsDavid M. Zoltowski, Jonathan W. Pillow. 3521-3531 [doi]
- Multiplicative Weights Updates with Constant Step-Size in Graphical Constant-Sum GamesYun Kuen Cheung. 3532-3542 [doi]
- Why Is My Classifier Discriminatory?Irene Chen, Fredrik D. Johansson, David Sontag. 3543-3554 [doi]
- Multi-Layered Gradient Boosting Decision TreesJi Feng, Yang Yu 0001, Zhi-Hua Zhou. 3555-3565 [doi]
- Learn What Not to Learn: Action Elimination with Deep Reinforcement LearningTom Zahavy, Matan Haroush, Nadav Merlis, Daniel J. Mankowitz, Shie Mannor. 3566-3577 [doi]
- Communication Efficient Parallel Algorithms for Optimization on ManifoldsBayan Saparbayeva, Michael Minyi Zhang, Lizhen Lin. 3578-3588 [doi]
- Neural Code Comprehension: A Learnable Representation of Code SemanticsTal Ben-Nun, Alice Shoshana Jakobovits, Torsten Hoefler. 3589-3601 [doi]
- Tight Bounds for Collaborative PAC Learning via Multiplicative WeightsJiecao Chen, Qin Zhang 0001, Yuan Zhou. 3602-3611 [doi]
- BinGAN: Learning Compact Binary Descriptors with a Regularized GANMaciej Zieba, Piotr Semberecki, Tarek El-Gaaly, Tomasz Trzcinski. 3612-3622 [doi]
- Modern Neural Networks Generalize on Small Data SetsMatthew Olson, Abraham J. Wyner, Richard Berk. 3623-3632 [doi]
- Escaping Saddle Points in Constrained OptimizationAryan Mokhtari, Asuman E. Ozdaglar, Ali Jadbabaie. 3633-3643 [doi]
- Adversarial Attacks on Stochastic BanditsKwang-Sung Jun, Lihong Li 0001, Yuzhe Ma, Xiaojin (Jerry) Zhu. 3644-3653 [doi]
- Optimal Subsampling with Influence FunctionsDaniel Ting, Eric Brochu. 3654-3663 [doi]
- A Bandit Approach to Sequential Experimental Design with False Discovery ControlKevin G. Jamieson, Lalit Jain. 3664-3674 [doi]
- Equality of Opportunity in Classification: A Causal ApproachJunzhe Zhang, Elias Bareinboim. 3675-3685 [doi]
- Towards Understanding Acceleration Tradeoff between Momentum and Asynchrony in Nonconvex Stochastic OptimizationTianyi Liu, Shiyang Li, Jianping Shi, Enlu Zhou, Tuo Zhao. 3686-3696 [doi]
- Unsupervised Attention-guided Image-to-Image TranslationYoussef Alami Mejjati, Christian Richardt, James Tompkin, Darren Cosker, Kwang In Kim. 3697-3707 [doi]
- Inferring Networks From Random Walk-Based Node SimilaritiesJeremy G. Hoskins, Cameron Musco, Christopher Musco, Babis Tsourakakis. 3708-3719 [doi]
- NEON2: Finding Local Minima via First-Order OraclesZeyuan Allen Zhu, Yuanzhi Li. 3720-3730 [doi]
- Zeroth-Order Stochastic Variance Reduction for Nonconvex OptimizationSijia Liu 0001, Bhavya Kailkhura, Pin-Yu Chen, Pai-Shun Ting, Shiyu Chang, Lisa Amini. 3731-3741 [doi]
- Online Structured Laplace Approximations for Overcoming Catastrophic ForgettingHippolyt Ritter, Aleksandar Botev, David Barber. 3742-3752 [doi]
- DeepProbLog: Neural Probabilistic Logic ProgrammingRobin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, Luc De Raedt. 3753-3763 [doi]
- Convergence of Cubic Regularization for Nonconvex Optimization under KL PropertyYi Zhou, Zhe Wang, Yingbin Liang. 3764-3773 [doi]
- Direct Estimation of Differences in Causal GraphsYuhao Wang, Chandler Squires, Anastasiya Belyaeva, Caroline Uhler. 3774-3785 [doi]
- Sublinear Time Low-Rank Approximation of Distance MatricesAinesh Bakshi, David P. Woodruff. 3786-3796 [doi]
- Variational PDEs for Acceleration on Manifolds and Application to DiffeomorphismsGanesh Sundaramoorthi, Anthony J. Yezzi. 3797-3807 [doi]
- Bayesian Inference of Temporal Task Specifications from DemonstrationsAnkit Shah, Pritish Kamath, Julie A. Shah, Shen Li. 3808-3817 [doi]
- Data center cooling using model-predictive controlNevena Lazic, Craig Boutilier, Tyler Lu, Eehern Wong, Binz Roy, M. K. Ryu, Greg Imwalle. 3818-3827 [doi]
- Acceleration through Optimistic No-Regret DynamicsJun-Kun Wang, Jacob D. Abernethy. 3828-3838 [doi]
- Lipschitz regularity of deep neural networks: analysis and efficient estimationAladin Virmaux, Kevin Scaman. 3839-3848 [doi]
- Minimax Estimation of Neural Net DistanceKaiyi Ji, Yingbin Liang. 3849-3858 [doi]
- Leveraging the Exact Likelihood of Deep Latent Variable ModelsPierre-Alexandre Mattei, Jes Frellsen. 3859-3870 [doi]
- Bipartite Stochastic Block Models with Tiny ClustersStefan Neumann 0003. 3871-3881 [doi]
- Learning sparse neural networks via sensitivity-driven regularizationEnzo Tartaglione, Skjalg Lepsøy, Attilio Fiandrotti, Gianluca Francini. 3882-3892 [doi]
- Faster Online Learning of Optimal Threshold for Consistent F-measure OptimizationXiaoxuan Zhang, Mingrui Liu, Xun Zhou, Tianbao Yang. 3893-3903 [doi]
- Direct Runge-Kutta Discretization Achieves AccelerationJingzhao Zhang, Aryan Mokhtari, Suvrit Sra, Ali Jadbabaie. 3904-3913 [doi]
- Adversarial Examples that Fool both Computer Vision and Time-Limited HumansGamaleldin F. Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alexey Kurakin, Ian J. Goodfellow, Jascha Sohl-Dickstein. 3914-3924 [doi]
- Stochastic Nested Variance Reduced Gradient Descent for Nonconvex OptimizationDongruo Zhou, Pan Xu, Quanquan Gu. 3925-3936 [doi]
- Faster Neural Networks Straight from JPEGLionel Gueguen, Alex Sergeev, Ben Kadlec, Rosanne Liu, Jason Yosinski. 3937-3948 [doi]
- TopRank: A practical algorithm for online stochastic rankingTor Lattimore, Branislav Kveton, Shuai Li, Csaba Szepesvári. 3949-3958 [doi]
- Learning from discriminative feature feedbackSanjoy Dasgupta, Akansha Dey, Nicholas Roberts, Sivan Sabato. 3959-3967 [doi]
- RetGK: Graph Kernels based on Return Probabilities of Random WalksZhen Zhang 0007, Mianzhi Wang, Yijian Xiang, Yan Huang 0018, Arye Nehorai. 3968-3978 [doi]
- Deep Generative Markov State ModelsHao Wu, Andreas Mardt, Luca Pasquali, Frank Noé. 3979-3988 [doi]
- Early Stopping for Nonparametric TestingMeimei Liu, Guang Cheng. 3989-3998 [doi]
- Solving Non-smooth Constrained Programs with Lower Complexity than \mathcal{O}(1/\varepsilon): A Primal-Dual Homotopy Smoothing ApproachXiaohan Wei, Hao Yu 0002, Qing Ling, Michael J. Neely. 3999-4009 [doi]
- Heterogeneous Bitwidth Binarization in Convolutional Neural NetworksJoshua Fromm, Shwetak Patel, Matthai Philipose. 4010-4019 [doi]
- Unsupervised Learning of Object Landmarks through Conditional Image GenerationTomas Jakab, Ankush Gupta, Hakan Bilen, Andrea Vedaldi. 4020-4031 [doi]
- Probabilistic Neural Programmed Networks for Scene GenerationZhiwei Deng, Jiacheng Chen, Yifang Fu, Greg Mori. 4032-4042 [doi]
- The streaming rollout of deep networks - towards fully model-parallel executionVolker Fischer, Jan Köhler, Thomas Pfeil. 4043-4054 [doi]
- KONG: Kernels for ordered-neighborhood graphsMoez Draief, Konstantin Kutzkov, Kevin Scaman, Milan Vojnovic. 4055-4064 [doi]
- GumBolt: Extending Gumbel trick to Boltzmann priorsAmir H. Khoshaman, Mohammad H. Amin. 4065-4074 [doi]
- Neural Networks Trained to Solve Differential Equations Learn General RepresentationsMartin Magill, Faisal Qureshi, Hendrick W. de Haan. 4075-4085 [doi]
- Beauty-in-averageness and its contextual modulations: A Bayesian statistical accountChaitanya Ryali, Angela J. Yu. 4086-4096 [doi]
- Distributed Weight Consolidation: A Brain Segmentation Case StudyPatrick McClure, Charles Y. Zheng, Jakub Kaczmarzyk, John Rogers-Lee, Satra Ghosh, Dylan Nielson, Peter A. Bandettini, Francisco Pereira. 4097-4107 [doi]
- Efficient Projection onto the Perfect Phylogeny ModelBei Jia, Surjyendu Ray, Sam Safavi, José Bento. 4108-4118 [doi]
- TETRIS: TilE-matching the TRemendous Irregular SparsityYu Ji, Ling Liang, Lei Deng, Youyang Zhang, Youhui Zhang, Yuan Xie. 4119-4129 [doi]
- Cooperative neural networks (CoNN): Exploiting prior independence structure for improved classificationHarsh Shrivastava, Eugene Bart, Bob Price, Hanjun Dai, Bo Dai, Srinivas Aluru. 4130-4140 [doi]
- Differentially Private Robust Low-Rank ApproximationRaman Arora, Vladimir Braverman, Jalaj Upadhyay. 4141-4149 [doi]
- Meta-Learning MCMC ProposalsTongzhou Wang, Yi Wu, Dave Moore, Stuart J. Russell. 4150-4160 [doi]
- An Information-Theoretic Analysis for Thompson Sampling with Many ActionsShi Dong, Benjamin Van Roy. 4161-4169 [doi]
- Flexible and accurate inference and learning for deep generative modelsEszter Vértes, Maneesh Sahani. 4170-4179 [doi]
- The Price of Privacy for Low-rank FactorizationJalaj Upadhyay. 4180-4191 [doi]
- Regret Bounds for Robust Adaptive Control of the Linear Quadratic RegulatorSarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, Stephen Tu. 4192-4201 [doi]
- Bilevel Distance Metric Learning for Robust Image RecognitionJie Xu, Lei Luo, Cheng Deng, Heng Huang. 4202-4211 [doi]
- Differentially Private Uniformly Most Powerful Tests for Binomial DataJordan Awan, Aleksandra Slavkovic. 4212-4222 [doi]
- Scalable Coordinated Exploration in Concurrent Reinforcement LearningMaria Dimakopoulou, Ian Osband, Benjamin Van Roy. 4223-4232 [doi]
- Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network modelsAmir Dezfouli, Richard W. Morris, Fabio T. Ramos, Peter Dayan, Bernard W. Balleine. 4233-4242 [doi]
- BML: A High-performance, Low-cost Gradient Synchronization Algorithm for DML TrainingSongtao Wang, Dan Li, Yang Cheng, Jinkun Geng, Yanshu Wang, Shuai Wang, Shu-Tao Xia, Jianping Wu. 4243-4253 [doi]
- Inexact trust-region algorithms on Riemannian manifoldsHiroyuki Kasai, Bamdev Mishra. 4254-4265 [doi]
- Can We Gain More from Orthogonality Regularizations in Training Deep Networks?Nitin Bansal, Xiaohan Chen, Zhangyang Wang. 4266-4276 [doi]
- Binary Rating Estimation with Graph Side InformationKwangjun Ahn, Kangwook Lee, Hyunseung Cha, Changho Suh. 4277-4288 [doi]
- SimplE Embedding for Link Prediction in Knowledge GraphsSeyed Mehran Kazemi, David Poole 0001. 4289-4300 [doi]
- Differentially Private Contextual Linear BanditsRoshan Shariff, Or Sheffet. 4301-4311 [doi]
- Submodular Field Grammars: Representation, Inference, and Application to Image ParsingAbram L. Friesen, Pedro M. Domingos. 4312-4322 [doi]
- A Bridging Framework for Model Optimization and Deep PropagationRisheng Liu, Shichao Cheng, Xiaokun Liu, Long Ma, Xin Fan, Zhongxuan Luo. 4323-4332 [doi]
- Completing State Representations using Spectral LearningNan Jiang, Alex Kulesza, Satinder P. Singh. 4333-4342 [doi]
- Optimization of Smooth Functions with Noisy Observations: Local Minimax RatesYining Wang, Sivaraman Balakrishnan, Aarti Singh. 4343-4354 [doi]
- Adding One Neuron Can Eliminate All Bad Local MinimaShiyu Liang, Ruoyu Sun, Jason D. Lee, R. Srikant. 4355-4365 [doi]
- Mean-field theory of graph neural networks in graph partitioningTatsuro Kawamoto, Masashi Tsubaki, Tomoyuki Obuchi. 4366-4376 [doi]
- The Physical Systems Behind Optimization AlgorithmsLin Yang, Raman Arora, Vladimir Braverman, Tuo Zhao. 4377-4386 [doi]
- Mallows Models for Top-k ListsFlavio Chierichetti, Anirban Dasgupta 0001, Shahrzad Haddadan, Ravi Kumar 0001, Silvio Lattanzi. 4387-4397 [doi]
- Amortized Inference RegularizationRui Shu, Hung H. Bui, Shengjia Zhao, Mykel J. Kochenderfer, Stefano Ermon. 4398-4407 [doi]
- Maximum Causal Tsallis Entropy Imitation LearningKyungjae Lee, Sungjoon Choi, Songhwai Oh. 4408-4418 [doi]
- Limited Memory Kelley's Method Converges for Composite Convex and Submodular ObjectivesSong Zhou, Swati Gupta, Madeleine Udell. 4419-4429 [doi]
- Semi-Supervised Learning with Declaratively Specified Entropy ConstraintsHaitian Sun, William W. Cohen, Lidong Bing. 4430-4440 [doi]
- End-to-end Symmetry Preserving Inter-atomic Potential Energy Model for Finite and Extended SystemsLinfeng Zhang, Jiequn Han, Han Wang, Wissam Saidi, Roberto Car, Weinan E. 4441-4451 [doi]
- Sparsified SGD with MemorySebastian U. Stich, Jean-Baptiste Cordonnier, Martin Jaggi. 4452-4463 [doi]
- Exponentiated Strongly Rayleigh DistributionsZelda E. Mariet, Suvrit Sra, Stefanie Jegelka. 4464-4474 [doi]
- Importance Weighting and Variational InferenceJustin Domke, Daniel R. Sheldon. 4475-4484 [doi]
- Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech SynthesisYe Jia, Yu Zhang, Ron J. Weiss, Quan Wang, Jonathan Shen, Fei Ren, Zhifeng Chen, Patrick Nguyen, Ruoming Pang, Ignacio Lopez-Moreno, Yonghui Wu. 4485-4495 [doi]
- Expanding Holographic Embeddings for Knowledge CompletionYexiang Xue, Yang Yuan, Zhitian Xu, Ashish Sabharwal. 4496-4506 [doi]
- Lifelong Inverse Reinforcement LearningJorge Armando Mendez Mendez, Shashank Shivkumar, Eric Eaton. 4507-4518 [doi]
- Explaining Deep Learning Models - A Bayesian Non-parametric ApproachWenbo Guo, Sui Huang, Yunzhe Tao, Xinyu Xing, Lin Lin. 4519-4529 [doi]
- Third-order Smoothness Helps: Faster Stochastic Optimization Algorithms for Finding Local MinimaYaodong Yu, Pan Xu, Quanquan Gu. 4530-4540 [doi]
- COLA: Decentralized Linear LearningLie He, An Bian, Martin Jaggi. 4541-4551 [doi]
- MiME: Multilevel Medical Embedding of Electronic Health Records for Predictive HealthcareEdward Choi, Cao Xiao, Walter F. Stewart, Jimeng Sun. 4552-4562 [doi]
- Adaptive Sampling Towards Fast Graph Representation LearningWen-bing Huang, Tong Zhang 0001, Yu Rong, JunZhou Huang. 4563-4572 [doi]
- Hunting for Discriminatory Proxies in Linear Regression ModelsSamuel Yeom, Anupam Datta, Matt Fredrikson. 4573-4583 [doi]
- Towards Robust Detection of Adversarial ExamplesTianyu Pang, Chao Du, Yinpeng Dong, Jun Zhu. 4584-4594 [doi]
- Active MattingXin Yang, Ke Xu, Shaozhe Chen, Shengfeng He, Baocai Yin, Rynson W. H. Lau. 4595-4605 [doi]
- Learning filter widths of spectral decompositions with waveletsHaidar Khan, Bülent Yener. 4606-4617 [doi]
- Byzantine Stochastic Gradient DescentDan Alistarh, Zeyuan Allen Zhu, Jerry Li 0001. 4618-4628 [doi]
- PG-TS: Improved Thompson Sampling for Logistic Contextual BanditsBianca Dumitrascu, Karen Feng, Barbara E. Engelhardt. 4629-4638 [doi]
- Spectral Filtering for General Linear Dynamical SystemsElad Hazan, Holden Lee, Karan Singh, Cyril Zhang, Yi Zhang. 4639-4648 [doi]
- On Learning Intrinsic Rewards for Policy Gradient MethodsZeyu Zheng, Junhyuk Oh, Satinder Singh. 4649-4659 [doi]
- Boolean Decision Rules via Column GenerationSanjeeb Dash, Oktay Günlük, Dennis Wei. 4660-4670 [doi]
- Adversarial Text Generation via Feature-Mover's DistanceLiqun Chen, Shuyang Dai, Chenyang Tao, Haichao Zhang, Zhe Gan, Dinghan Shen, Yizhe Zhang, Guoyin Wang, Ruiyi Zhang, Lawrence Carin. 4671-4682 [doi]
- Fast Rates of ERM and Stochastic Approximation: Adaptive to Error Bound ConditionsMingrui Liu, Xiaoxuan Zhang, Lijun Zhang, Jing Rong, Tianbao Yang. 4683-4694 [doi]
- Learning Bounds for Greedy Approximation with Explicit Feature Maps from Multiple KernelsShahin Shahrampour, Vahid Tarokh. 4695-4706 [doi]
- A Mathematical Model For Optimal Decisions In A Representative DemocracyMalik Magdon-Ismail, Lirong Xia. 4707-4716 [doi]
- Negotiable Reinforcement Learning for Pareto Optimal Sequential Decision-MakingNishant Desai, Andrew Critch, Stuart J. Russell. 4717-4725 [doi]
- Non-metric Similarity Graphs for Maximum Inner Product SearchStanislav Morozov, Artem Babenko. 4726-4735 [doi]
- Recurrently Controlled Recurrent NetworksYi Tay, Anh Tuan Luu, Siu Cheung Hui. 4736-4748 [doi]
- Fast greedy algorithms for dictionary selection with generalized sparsity constraintsKaito Fujii, Tasuku Soma. 4749-4758 [doi]
- Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics ModelsKurtland Chua, Roberto Calandra, Rowan McAllister, Sergey Levine. 4759-4770 [doi]
- A Smoother Way to Train Structured Prediction ModelsVenkata Krishna Pillutla, Vincent Roulet, Sham M. Kakade, Zaïd Harchaoui. 4771-4783 [doi]
- Context-dependent upper-confidence bounds for directed explorationRaksha Kumaraswamy, Matthew Schlegel, Adam White, Martha White. 4784-4794 [doi]
- A Unified View of Piecewise Linear Neural Network VerificationRudy R. Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, Pawan Kumar Mudigonda. 4795-4804 [doi]
- Hierarchical Graph Representation Learning with Differentiable PoolingZhitao Ying, Jiaxuan You, Christopher Morris 0001, Xiang Ren, William L. Hamilton, Jure Leskovec. 4805-4815 [doi]
- Non-Ergodic Alternating Proximal Augmented Lagrangian Algorithms with Optimal RatesQuoc Tran-Dinh. 4816-4824 [doi]
- Information-based Adaptive Stimulus Selection to Optimize Communication Efficiency in Brain-Computer InterfacesBoyla Mainsah, Dmitry Kalika, Leslie M. Collins, Siyuan Liu, Chandra S. Throckmorton. 4825-4835 [doi]
- Porcupine Neural Networks: Approximating Neural Network LandscapesSoheil Feizi, Hamid Javadi, Jesse Zhang, David Tse. 4836-4846 [doi]
- Fairness Through Computationally-Bounded AwarenessMichael P. Kim, Omer Reingold, Guy N. Rothblum. 4847-4857 [doi]
- Adaptive Negative Curvature Descent with Applications in Non-convex OptimizationMingrui Liu, Zhe Li, Xiaoyu Wang, Jinfeng Yi, Tianbao Yang. 4858-4867 [doi]
- Is Q-Learning Provably Efficient?Chi Jin, Zeyuan Allen Zhu, Sébastien Bubeck, Michael I. Jordan. 4868-4878 [doi]
- Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic CorrectionsXin Zhang, Armando Solar-Lezama, Rishabh Singh. 4879-4890 [doi]
- Measures of distortion for machine learningLeena Chennuru Vankadara, Ulrike von Luxburg. 4891-4900 [doi]
- On the Local Minima of the Empirical RiskChi Jin, Lydia T. Liu, Rong Ge 0001, Michael I. Jordan. 4901-4910 [doi]
- Densely Connected Attention Propagation for Reading ComprehensionYi Tay, Anh Tuan Luu, Siu Cheung Hui, Jian Su. 4911-4922 [doi]
- Bandit Learning with Positive ExternalitiesVirag Shah, Jose Blanchet, Ramesh Johari. 4923-4933 [doi]
- Learning Confidence Sets using Support Vector MachinesWenbo Wang, Xingye Qiao. 4934-4943 [doi]
- Efficient Neural Network Robustness Certification with General Activation FunctionsHuan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, Luca Daniel. 4944-4953 [doi]
- Hessian-based Analysis of Large Batch Training and Robustness to AdversariesZhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, Michael W. Mahoney. 4954-4964 [doi]
- Neural Edit Operations for Biological SequencesSatoshi Koide, Keisuke Kawano, Takuro Kutsuna. 4965-4975 [doi]
- Objective and efficient inference for couplings in neuronal networksYu Terada, Tomoyuki Obuchi, Takuya Isomura, Yoshiyuki Kabashima. 4976-4985 [doi]
- Learning from Group Comparisons: Exploiting Higher Order InteractionsYao Li, Minhao Cheng, Kevin Fujii, Fushing Hsieh, Cho-Jui Hsieh. 4986-4995 [doi]
- Supervising Unsupervised LearningVikas Garg. 4996-5006 [doi]
- Nonparametric Bayesian Lomax delegate racing for survival analysis with competing risksQuan Zhang, Mingyuan Zhou. 5007-5018 [doi]
- Adversarially Robust Generalization Requires More DataLudwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, Aleksander Madry. 5019-5031 [doi]
- Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking AgentsEdoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth O. Stanley, Jeff Clune. 5032-5043 [doi]
- Practical exact algorithm for trembling-hand equilibrium refinements in gamesGabriele Farina, Nicola Gatti 0001, Tuomas Sandholm. 5044-5054 [doi]
- LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed LearningTianyi Chen, Georgios B. Giannakis, Tao Sun, Wotao Yin. 5055-5065 [doi]
- Scalable Robust Matrix Factorization with Nonconvex LossQuanming Yao, James T. Kwok. 5066-5075 [doi]
- Power-law efficient neural codes provide general link between perceptual bias and discriminabilityMichael Morais, Jonathan W. Pillow. 5076-5085 [doi]
- Geometry-Aware Recurrent Neural Networks for Active Visual RecognitionRicson Cheng, Ziyan Wang, Katerina Fragkiadaki. 5086-5096 [doi]
- Unsupervised Adversarial InvarianceAyush Jaiswal, Rex Yue Wu, Wael Abd-Almageed, Prem Natarajan. 5097-5107 [doi]
- Content preserving text generation with attribute controlsLajanugen Logeswaran, Honglak Lee, Samy Bengio. 5108-5118 [doi]
- Multi-armed Bandits with CompensationSiwei Wang, Longbo Huang. 5119-5128 [doi]
- GradiVeQ: Vector Quantization for Bandwidth-Efficient Gradient Aggregation in Distributed CNN TrainingMingchao Yu, Zhifeng Lin, Krishna Narra, Songze Li, Youjie Li, Nam Sung Kim, Alexander G. Schwing, Murali Annavaram, Salman Avestimehr. 5129-5139 [doi]
- Learning in Games with Lossy FeedbackZhengyuan Zhou, Panayotis Mertikopoulos, Susan Athey, Nicholas Bambos, Peter W. Glynn, Yinyu Ye. 5140-5150 [doi]
- Scalable methods for 8-bit training of neural networksRon Banner, Itay Hubara, Elad Hoffer, Daniel Soudry. 5151-5159 [doi]
- Dropping Symmetry for Fast Symmetric Nonnegative Matrix FactorizationZhihui Zhu, Xiao Li, Kai Liu, Qiuwei Li. 5160-5170 [doi]
- Link Prediction Based on Graph Neural NetworksMuhan Zhang, Yixin Chen. 5171-5181 [doi]
- Why so gloomy? A Bayesian explanation of human pessimism bias in the multi-armed bandit taskDalin Guo, Angela J. Yu. 5182-5191 [doi]
- Near-Optimal Time and Sample Complexities for Solving Markov Decision Processes with a Generative ModelAaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, Yinyu Ye. 5192-5202 [doi]
- ChannelNets: Compact and Efficient Convolutional Neural Networks via Channel-Wise ConvolutionsHongyang Gao, Zhengyang Wang, Shuiwang Ji. 5203-5211 [doi]
- Causal Inference and Mechanism Clustering of A Mixture of Additive Noise ModelsShoubo Hu, Zhitang Chen, Vahid Partovi Nia, Lai-Wan Chan, Yanhui Geng. 5212-5222 [doi]
- Contour location via entropy reduction leveraging multiple information sourcesAlexandre Noll Marques, Rémi Lam, Karen Willcox. 5223-5233 [doi]
- Assessing Generative Models via Precision and RecallMehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, Sylvain Gelly. 5234-5243 [doi]
- Multiple-Step Greedy Policies in Approximate and Online Reinforcement LearningYonathan Efroni, Gal Dalal, Bruno Scherrer, Shie Mannor. 5244-5253 [doi]
- A Convex Duality Framework for GANsFarzan Farnia, David Tse. 5254-5263 [doi]
- Horizon-Independent Minimax Linear RegressionAlan Malek, Peter L. Bartlett. 5264-5273 [doi]
- Exploiting Numerical Sparsity for Efficient Learning : Faster Eigenvector Computation and RegressionNeha Gupta, Aaron Sidford. 5274-5283 [doi]
- Experimental Design for Cost-Aware Learning of Causal GraphsErik M. Lindgren, Murat Kocaoglu, Alexandros G. Dimakis, Sriram Vishwanath. 5284-5294 [doi]
- Task-Driven Convolutional Recurrent Models of the Visual SystemAran Nayebi, Daniel Bear, Jonas Kubilius, Kohitij Kar, Surya Ganguli, David Sussillo, James J. DiCarlo, Daniel L. Yamins. 5295-5306 [doi]
- Meta-Reinforcement Learning of Structured Exploration StrategiesAbhishek Gupta, Russell Mendonca, Yuxuan Liu, Pieter Abbeel, Sergey Levine. 5307-5316 [doi]
- Sample Efficient Stochastic Gradient Iterative Hard Thresholding Method for Stochastic Sparse Linear Regression with Limited Attribute ObservationTomoya Murata, Taiji Suzuki. 5317-5326 [doi]
- Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive VarianceNeal Jean, Sang Michael Xie, Stefano Ermon. 5327-5338 [doi]
- Generalizing to Unseen Domains via Adversarial Data AugmentationRiccardo Volpi, Hongseok Namkoong, Ozan Sener, John C. Duchi, Vittorio Murino, Silvio Savarese. 5339-5349 [doi]
- Hyperbolic Neural NetworksOctavian-Eugen Ganea, Gary Bécigneul, Thomas Hofmann. 5350-5360 [doi]
- Breaking the Curse of Horizon: Infinite-Horizon Off-Policy EstimationQiang Liu, Lihong Li 0001, Ziyang Tang, Dengyong Zhou. 5361-5371 [doi]
- Learning Task Specifications from DemonstrationsMarcell Vazquez-Chanlatte, Susmit Jha, Ashish Tiwari, Mark K. Ho, Sanjit A. Seshia. 5372-5382 [doi]
- Learning a latent manifold of odor representations from neural responses in piriform cortexAnqi Wu, Stan Pashkovski, Sandeep R. Datta, Jonathan W. Pillow. 5383-5393 [doi]
- Fully Understanding The Hashing TrickLior Kamma, Casper Benjamin Freksen, Kasper Green Larsen. 5394-5404 [doi]
- Evolved Policy GradientsRein Houthooft, Yuhua Chen, Phillip Isola, Bradly C. Stadie, Filip Wolski, Jonathan Ho, Pieter Abbeel. 5405-5414 [doi]
- The Spectrum of the Fisher Information Matrix of a Single-Hidden-Layer Neural NetworkJeffrey Pennington, Pratik Worah. 5415-5424 [doi]
- Learning Concave Conditional Likelihood Models for Improved Analysis of Tandem Mass SpectraJohn T. Halloran, David M. Rocke. 5425-5435 [doi]
- Differentially Private k-Means with Constant Multiplicative ErrorUri Stemmer, Haim Kaplan. 5436-5446 [doi]
- Policy Optimization via Importance SamplingAlberto Maria Metelli, Matteo Papini, Francesco Faccio, Marcello Restelli. 5447-5459 [doi]
- Estimating Learnability in the Sublinear Data RegimeWeihao Kong, Gregory Valiant. 5460-5469 [doi]
- Algorithmic Assurance: An Active Approach to Algorithmic Testing using Bayesian OptimisationShivapratap Gopakumar, Sunil Gupta, Santu Rana, Vu Nguyen 0001, Svetha Venkatesh. 5470-5478 [doi]
- Community Exploration: From Offline Optimization to Online LearningXiaowei Chen, Weiran Huang, Wei Chen, John C. S. Lui. 5479-5488 [doi]
- A Dual Framework for Low-rank Tensor CompletionMadhav Nimishakavi, Pratik Kumar Jawanpuria, Bamdev Mishra. 5489-5500 [doi]
- Low-rank Interaction with Sparse Additive Effects Model for Large Data FramesGeneviève Robin, Hoi-To Wai, Julie Josse, Olga Klopp, Eric Moulines. 5501-5511 [doi]
- Inference Aided Reinforcement Learning for Incentive Mechanism Design in CrowdsourcingZehong Hu, Yitao Liang, Jie Zhang, Zhao Li, Yang Liu. 5512-5522 [doi]
- Middle-Out DecodingShikib Mehri, Leonid Sigal. 5523-5534 [doi]
- First-order Stochastic Algorithms for Escaping From Saddle Points in Almost Linear TimeYi Xu, Jing Rong, Tianbao Yang. 5535-5545 [doi]
- To Trust Or Not To Trust A ClassifierHeinrich Jiang, Been Kim, Melody Y. Guan, Maya R. Gupta. 5546-5557 [doi]
- Reparameterization Gradient for Non-differentiable ModelsWonyeol Lee 0001, Hangyeol Yu, Hongseok Yang. 5558-5568 [doi]
- A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex OptimizationZhize Li, Jian Li. 5569-5579 [doi]
- Multimodal Generative Models for Scalable Weakly-Supervised LearningMike Wu, Noah Goodman. 5580-5590 [doi]
- How Much Restricted Isometry is Needed In Nonconvex Matrix Recovery?Richard Y. Zhang, Cédric Josz, Somayeh Sojoudi, Javad Lavaei. 5591-5602 [doi]
- Occam's razor is insufficient to infer the preferences of irrational agentsStuart Armstrong, Sören Mindermann. 5603-5614 [doi]
- Manifold Structured PredictionAlessandro Rudi, Carlo Ciliberto, Gian Maria Marconi, Lorenzo Rosasco. 5615-5626 [doi]
- Fast Greedy MAP Inference for Determinantal Point Process to Improve Recommendation DiversityLaming Chen, Guoxin Zhang, Eric Zhou. 5627-5638 [doi]
- Learning Others' Intentional Models in Multi-Agent Settings Using Interactive POMDPsYanlin Han, Piotr J. Gmytrasiewicz. 5639-5647 [doi]
- Contextual Pricing for Lipschitz BuyersJieming Mao, Renato Paes Leme, Jon Schneider. 5648-5656 [doi]
- Online Improper Learning with an Approximation OracleElad Hazan, Wei Hu, Yuanzhi Li, Zhiyuan Li. 5657-5665 [doi]
- Bandit Learning in Concave N-Person GamesMario Bravo, David S. Leslie, Panayotis Mertikopoulos. 5666-5676 [doi]
- On Fast Leverage Score Sampling and Optimal LearningAlessandro Rudi, Daniele Calandriello, Luigi Carratino, Lorenzo Rosasco. 5677-5687 [doi]
- Unsupervised Video Object Segmentation for Deep Reinforcement LearningVikash Goel, Jameson Weng, Pascal Poupart. 5688-5699 [doi]
- Efficient inference for time-varying behavior during learningNicholas G. Roy, Ji Hyun Bak, Athena Akrami, Carlos Brody, Jonathan W. Pillow. 5700-5710 [doi]
- Learning convex polytopes with marginLee-Ad Gottlieb, Eran Kaufman, Aryeh Kontorovich, Gabriel Nivasch. 5711-5721 [doi]
- Critical initialisation for deep signal propagation in noisy rectifier neural networksArnu Pretorius, Elan Van Biljon, Steve Kroon, Herman Kamper. 5722-5731 [doi]
- Insights on representational similarity in neural networks with canonical correlationAri S. Morcos, Maithra Raghu, Samy Bengio. 5732-5741 [doi]
- Variational Inference with Tail-adaptive f-DivergenceDilin Wang, Hao Liu, Qiang Liu. 5742-5752 [doi]
- Mental Sampling in Multimodal RepresentationsJian-Qiao Zhu, Adam Sanborn, Nick Chater. 5753-5764 [doi]
- Adversarially Robust Optimization with Gaussian ProcessesIlija Bogunovic, Jonathan Scarlett, Stefanie Jegelka, Volkan Cevher. 5765-5775 [doi]
- Learning to MultitaskYu Zhang, Ying Wei, Qiang Yang. 5776-5787 [doi]
- Loss Functions for Multiset PredictionSean Welleck, Zixin Yao, Yu Gai, Jialin Mao, Zheng Zhang, KyungHyun Cho. 5788-5797 [doi]
- Computing Kantorovich-Wasserstein Distances on d-dimensional histograms using (d+1)-partite graphsGennaro Auricchio, Federico Bassetti, Stefano Gualandi, Marco Veneroni. 5798-5808 [doi]
- Neural Interaction Transparency (NIT): Disentangling Learned Interactions for Improved InterpretabilityMichael Tsang, Hanpeng Liu, Sanjay Purushotham, Pavankumar Murali, Yan Liu. 5809-5818 [doi]
- CapProNet: Deep Feature Learning via Orthogonal Projections onto Capsule SubspacesLiheng Zhang, Marzieh Edraki, Guo-Jun Qi. 5819-5828 [doi]
- Gamma-Poisson Dynamic Matrix Factorization Embedded with Metadata InfluenceTrong Dinh Thac Do, Longbing Cao. 5829-5840 [doi]
- Masking: A New Perspective of Noisy SupervisionBo Han, Jiangchao Yao, Gang Niu, Mingyuan Zhou, Ivor W. Tsang, Ya Zhang, Masashi Sugiyama. 5841-5851 [doi]
- On GANs and GMMsEitan Richardson, Yair Weiss. 5852-5863 [doi]
- Differential Properties of Sinkhorn Approximation for Learning with Wasserstein DistanceGiulia Luise, Alessandro Rudi, Massimiliano Pontil, Carlo Ciliberto. 5864-5874 [doi]
- Practical Deep Stereo (PDS): Toward applications-friendly deep stereo matchingStepan Tulyakov, Anton Ivanov, François Fleuret. 5875-5885 [doi]
- A Bayes-Sard Cubature MethodToni Karvonen, Chris J. Oates, Simo Särkkä. 5886-5897 [doi]
- Dual Swap DisentanglingZunlei Feng, Xinchao Wang, Chenglong Ke, Anxiang Zeng, Dacheng Tao, Mingli Song. 5898-5908 [doi]
- Diverse Ensemble Evolution: Curriculum Data-Model MarriageTianyi Zhou, Shengjie Wang, Jeff A. Bilmes. 5909-5920 [doi]
- Binary Classification from Positive-Confidence DataTakashi Ishida, Gang Niu, Masashi Sugiyama. 5921-5932 [doi]
- Deep Generative Models for Distribution-Preserving Lossy CompressionMichael Tschannen, Eirikur Agustsson, Mario Lucic. 5933-5944 [doi]
- Exact natural gradient in deep linear networks and its application to the nonlinear caseAlberto Bernacchia, Máté Lengyel, Guillaume Hennequin. 5945-5954 [doi]
- Constructing Fast Network through Deconstruction of ConvolutionYunho Jeon, Junmo Kim. 5955-5965 [doi]
- Memory Replay GANs: Learning to Generate New Categories without ForgettingChenshen Wu, Luis Herranz, Xialei Liu, Yaxing Wang, Joost van de Weijer, Bogdan Raducanu. 5966-5976 [doi]
- The Convergence of Sparsified Gradient MethodsDan Alistarh, Torsten Hoefler, Mikael Johansson 0001, Nikola Konstantinov, Sarit Khirirat, Cédric Renggli. 5977-5987 [doi]
- Automating Bayesian optimization with Bayesian optimizationGustavo Malkomes, Roman Garnett. 5988-5997 [doi]
- Stacked Semantics-Guided Attention Model for Fine-Grained Zero-Shot LearningYunlong Yu, Zhong Ji, Yanwei Fu, Jichang Guo, Yanwei Pang, Zhongfei (Mark) Zhang. 5998-6007 [doi]
- Dirichlet-based Gaussian Processes for Large-scale Calibrated ClassificationDimitrios Milios, Raffaello Camoriano, Pietro Michiardi, Lorenzo Rosasco, Maurizio Filippone. 6008-6018 [doi]
- Multi-Task Zipping via Layer-wise Neuron SharingXiaoxi He, Zimu Zhou, Lothar Thiele. 6019-6029 [doi]
- Dimensionally Tight Bounds for Second-Order Hamiltonian Monte CarloOren Mangoubi, Nisheeth K. Vishnoi. 6030-6040 [doi]
- Approximation algorithms for stochastic clusteringDavid G. Harris, Shi Li, Aravind Srinivasan, Khoa Trinh, Thomas Pensyl. 6041-6050 [doi]
- Evolutionary Stochastic Gradient Descent for Optimization of Deep Neural NetworksXiaodong Cui, Wei Zhang, Zoltán Tüske, Michael Picheny. 6051-6061 [doi]
- Learning to Infer Graphics Programs from Hand-Drawn ImagesKevin Ellis, Daniel Ritchie, Armando Solar-Lezama, Josh Tenenbaum. 6062-6071 [doi]
- Graphical Generative Adversarial NetworksChongxuan Li, Max Welling, Jun Zhu 0001, Bo Zhang. 6072-6083 [doi]
- Variational Learning on Aggregate Outputs with Gaussian ProcessesHo Chung Leon Law, Dino Sejdinovic, Ewan Cameron, Tim C. D. Lucas, Seth R. Flaxman, Katherine Battle, Kenji Fukumizu. 6084-6094 [doi]
- MacNet: Transferring Knowledge from Machine Comprehension to Sequence-to-Sequence ModelsBoyuan Pan, Yazheng Yang, Hao Li, Zhou Zhao, Yueting Zhuang, Deng Cai, Xiaofei He. 6095-6105 [doi]
- Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural NetworksAli Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras, Tom Goldstein. 6106-6116 [doi]
- Information Constraints on Auto-Encoding Variational BayesRomain Lopez, Jeffrey Regier, Michael I. Jordan, Nir Yosef. 6117-6128 [doi]
- Recurrent Transformer Networks for Semantic CorrespondenceSeungryong Kim, Stephen Lin, Sangryul Jeon, Dongbo Min, Kwanghoon Sohn. 6129-6139 [doi]
- Online convex optimization for cumulative constraintsJianjun Yuan, Andrew G. Lamperski. 6140-6149 [doi]
- Predict Responsibly: Improving Fairness and Accuracy by Learning to DeferDavid Madras, Toniann Pitassi, Richard S. Zemel. 6150-6160 [doi]
- Deep State Space Models for Unconditional Word GenerationFlorian Schmidt, Thomas Hofmann. 6161-6171 [doi]
- ResNet with one-neuron hidden layers is a Universal ApproximatorHongzhou Lin, Stefanie Jegelka. 6172-6181 [doi]
- Transfer of Value Functions via Variational MethodsAndrea Tirinzoni, Rafael Rodríguez-Sánchez, Marcello Restelli. 6182-6192 [doi]
- The Cluster Description Problem - Complexity Results, Formulations and ApproximationsIan Davidson, Antoine Gourru, S. S. Ravi. 6193-6203 [doi]
- Sharp Bounds for Generalized Uniformity TestingIlias Diakonikolas, Daniel M. Kane, Alistair Stewart. 6204-6213 [doi]
- Deep Neural Networks with Box ConvolutionsEgor Burkov, Victor S. Lempitsky. 6214-6224 [doi]
- Learning towards Minimum Hyperspherical EnergyWeiyang Liu, Rongmei Lin, Zhen Liu, Lixin Liu, Zhiding Yu, Bo Dai, Le Song. 6225-6236 [doi]
- LF-Net: Learning Local Features from ImagesYuki Ono, Eduard Trulls, Pascal Fua, Kwang Moo Yi. 6237-6247 [doi]
- SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural GradientAaron Mishkin, Frederik Kunstner, Didrik Nielsen, Mark W. Schmidt, Mohammad Emtiyaz Khan. 6248-6258 [doi]
- Tangent: Automatic differentiation using source-code transformation for dynamically typed array programmingBart van Merrienboer, Dan Moldovan, Alexander B. Wiltschko. 6259-6268 [doi]
- Multi-domain Causal Structure Learning in Linear SystemsAmirEmad Ghassami, Negar Kiyavash, Biwei Huang, Kun Zhang. 6269-6279 [doi]
- Privacy Amplification by Subsampling: Tight Analyses via Couplings and DivergencesBorja Balle, Gilles Barthe, Marco Gaboardi. 6280-6290 [doi]
- Exponentially Weighted Imitation Learning for Batched Historical DataQing Wang, Jiechao Xiong, Lei Han, Peng Sun, Han Liu, Tong Zhang. 6291-6300 [doi]
- Algebraic tests of general Gaussian latent tree modelsDennis Leung, Mathias Drton. 6301-6310 [doi]
- Navigating with Graph Representations for Fast and Scalable Decoding of Neural Language ModelsMinjia Zhang, Wenhan Wang, Xiaodong Liu, Jianfeng Gao, Yuxiong He. 6311-6322