Abstract is missing.
- Selective Dyna-Style Planning Under Limited Model CapacityZaheer Abbas, Samuel Sokota, Erin Talvitie, Martha White. 1-10 [doi]
- A distributional view on multi-objective policy optimizationAbbas Abdolmaleki, Sandy H. Huang, Leonard Hasenclever, Michael Neunert, H. Francis Song, Martina Zambelli, Murilo F. Martins, Nicolas Heess, Raia Hadsell, Martin A. Riedmiller. 11-22 [doi]
- Efficient Optimistic Exploration in Linear-Quadratic Regulators via Lagrangian RelaxationMarc Abeille, Alessandro Lazaric. 23-31 [doi]
- Super-efficiency of automatic differentiation for functions defined as a minimumPierre Ablin, Gabriel Peyré, Thomas Moreau. 32-41 [doi]
- A Geometric Approach to Archetypal Analysis via Sparse ProjectionsVinayak Abrol, Pulkit Sharma. 42-51 [doi]
- Context Aware Local Differential PrivacyJayadev Acharya, Kallista Bonawitz, Peter Kairouz, Daniel Ramage, Ziteng Sun. 52-62 [doi]
- Efficient Intervention Design for Causal Discovery with LatentsRaghavendra Addanki, Shiva Prasad Kasiviswanathan, Andrew McGregor, Cameron Musco. 63-73 [doi]
- The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of GeneralizationBen Adlam, Jeffrey Pennington. 74-84 [doi]
- Rank Aggregation from Pairwise Comparisons in the Presence of Adversarial CorruptionsArpit Agarwal 0001, Shivani Agarwal, Sanjeev Khanna, Prathamesh Patil. 85-95 [doi]
- Boosting for Control of Dynamical SystemsNaman Agarwal, Nataly Brukhim, Elad Hazan, Zhou Lu. 96-103 [doi]
- An Optimistic Perspective on Offline Reinforcement LearningRishabh Agarwal, Dale Schuurmans, Mohammad Norouzi 0002. 104-114 [doi]
- Optimal Bounds between f-Divergences and Integral Probability MetricsRohit Agrawal 0002, Thibaut Horel. 115-124 [doi]
- LazyIter: A Fast Algorithm for Counting Markov Equivalent DAGs and Designing ExperimentsAli AhmadiTeshnizi, Saber Salehkaleybar, Negar Kiyavash. 125-133 [doi]
- Learning What to Defer for Maximum Independent SetsSungsoo Ahn, Younggyo Seo, Jinwoo Shin. 134-144 [doi]
- Invariant Risk Minimization GamesKartik Ahuja, Karthikeyan Shanmugam, Kush R. Varshney, Amit Dhurandhar. 145-155 [doi]
- Why bigger is not always better: on finite and infinite neural networksLaurence Aitchison. 156-164 [doi]
- Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence FunctionsAhmed M. Alaa, Mihaela van der Schaar. 165-174 [doi]
- Frequentist Uncertainty in Recurrent Neural Networks via Blockwise Influence FunctionsAhmed M. Alaa, Mihaela van der Schaar. 175-190 [doi]
- Random extrapolation for primal-dual coordinate descentAhmet Alacaoglu, Olivier Fercoq, Volkan Cevher. 191-201 [doi]
- A new regret analysis for Adam-type algorithmsAhmet Alacaoglu, Yura Malitsky, Panayotis Mertikopoulos, Volkan Cevher. 202-210 [doi]
- Restarted Bayesian Online Change-point Detector achieves Optimal Detection DelayRéda Alami, Odalric Maillard, Raphaël Féraud. 211-221 [doi]
- Maximum Likelihood with Bias-Corrected Calibration is Hard-To-Beat at Label Shift AdaptationAmr Alexandari, Anshul Kundaje, Avanti Shrikumar. 222-232 [doi]
- The Implicit Regularization of Stochastic Gradient Flow for Least SquaresAlnur Ali, Edgar Dobriban, Ryan J. Tibshirani. 233-244 [doi]
- Structural Language Models of CodeUri Alon 0002, Roy Sadaka, Omer Levy, Eran Yahav. 245-256 [doi]
- LowFER: Low-rank Bilinear Pooling for Link PredictionSaadullah Amin, Stalin Varanasi, Katherine Ann Dunfield, Günter Neumann. 257-268 [doi]
- Discount Factor as a Regularizer in Reinforcement LearningRon Amit, Ron Meir, Kamil Ciosek. 269-278 [doi]
- Neuro-Symbolic Visual Reasoning: DisentanglingSaeed Amizadeh, Hamid Palangi, Alex Polozov, Yichen Huang, Kazuhito Koishida. 279-290 [doi]
- The Differentiable Cross-Entropy MethodBrandon Amos, Denis Yarats. 291-302 [doi]
- Customizing ML Predictions for Online AlgorithmsKeerti Anand, Rong Ge, Debmalya Panigrahi. 303-313 [doi]
- Fairwashing explanations with off-manifold detergentChristopher J. Anders, Plamen Pasliev, Ann-Kathrin Dombrowski, Klaus-Robert Müller, Pan Kessel. 314-323 [doi]
- Population-Based Black-Box Optimization for Biological Sequence DesignChristof Angermüller, David Belanger, Andreea Gane, Zelda Mariet, David Dohan, Kevin Murphy, Lucy Colwell, D. Sculley. 324-334 [doi]
- Low-loss connection of weight vectors: distribution-based approachesIvan Anokhin, Dmitry Yarotsky. 335-344 [doi]
- Online metric algorithms with untrusted predictionsAntonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak 0001, Bertrand Simon. 345-355 [doi]
- NADS: Neural Architecture Distribution Search for Uncertainty AwarenessRandy Ardywibowo, Shahin Boluki, Xinyu Gong, Zhangyang Wang, Xiaoning Qian. 356-366 [doi]
- Provable Representation Learning for Imitation Learning via Bi-level OptimizationSanjeev Arora, Simon S. Du, Sham M. Kakade, Yuping Luo, Nikunj Saunshi. 367-376 [doi]
- Quantum BoostingSrinivasan Arunachalam, Reevu Maity. 377-387 [doi]
- Black-box Certification and Learning under Adversarial PerturbationsHassan Ashtiani, Vinayak Pathak, Ruth Urner. 388-398 [doi]
- Invertible generative models for inverse problems: mitigating representation error and dataset biasMuhammad Asim, Max Daniels, Oscar Leong, Ali Ahmed, Paul Hand. 399-409 [doi]
- On the Convergence of Nesterov's Accelerated Gradient Method in Stochastic SettingsMahmoud Assran, Mike Rabbat. 410-420 [doi]
- Safe screening rules for L0-regression from Perspective RelaxationsAlper Atamtürk, Andres Gomez. 421-430 [doi]
- Adversarial Learning Guarantees for Linear Hypotheses and Neural NetworksPranjal Awasthi, Natalie Frank, Mehryar Mohri. 431-441 [doi]
- Sample Amplification: Increasing Dataset Size even when Learning is ImpossibleBrian Axelrod, Shivam Garg 0001, Vatsal Sharan, Gregory Valiant. 442-451 [doi]
- Sparse Convex Optimization via Adaptively Regularized Hard ThresholdingKyriakos Axiotis, Maxim Sviridenko. 452-462 [doi]
- Model-Based Reinforcement Learning with Value-Targeted RegressionAlex Ayoub, Zeyu Jia, Csaba Szepesvári, Mengdi Wang, Lin Yang. 463-474 [doi]
- Forecasting Sequential Data Using Consistent Koopman AutoencodersOmri Azencot, N. Benjamin Erichson, Vanessa Lin, Michael W. Mahoney. 475-485 [doi]
- Constant Curvature Graph Convolutional NetworksGregor Bachmann, Gary Bécigneul, Octavian Ganea. 486-496 [doi]
- Scalable Nearest Neighbor Search for Optimal TransportArturs Backurs, Yihe Dong, Piotr Indyk, Ilya P. Razenshteyn, Tal Wagner. 497-506 [doi]
- Agent57: Outperforming the Atari Human BenchmarkAdrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi, Zhaohan Daniel Guo, Charles Blundell. 507-517 [doi]
- Fiduciary BanditsGal Bahar, Omer Ben-Porat, Kevin Leyton-Brown, Moshe Tennenholtz. 518-527 [doi]
- Learning De-biased Representations with Biased RepresentationsHyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, Seong Joon Oh. 528-539 [doi]
- Deep k-NN for Noisy LabelsDara Bahri, Heinrich Jiang, Maya R. Gupta. 540-550 [doi]
- Provable Self-Play Algorithms for Competitive Reinforcement LearningYu Bai, Chi Jin. 551-560 [doi]
- Sparse Subspace Clustering with Entropy-NormLiang Bai, Jiye Liang. 561-568 [doi]
- Coresets for Clustering in Graphs of Bounded TreewidthDaniel Baker, Vladimir Braverman, Lingxiao Huang, Shaofeng H.-C. Jiang, Robert Krauthgamer, Xuan Wu 0002. 569-579 [doi]
- Refined bounds for algorithm configuration: The knife-edge of dual class approximabilityMaria-Florina Balcan, Tuomas Sandholm, Ellen Vitercik. 580-590 [doi]
- Ready Policy One: World Building Through Active LearningPhilip Ball, Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski, Stephen J. Roberts. 591-601 [doi]
- Stochastic Optimization for Regularized Wasserstein EstimatorsMarin Ballu, Quentin Berthet, Francis R. Bach. 602-612 [doi]
- Dual Mirror Descent for Online Allocation ProblemsSantiago R. Balseiro, Haihao Lu, Vahab S. Mirrokni. 613-628 [doi]
- Inductive-bias-driven Reinforcement Learning For Efficient Schedules in Heterogeneous ClustersSubho S. Banerjee, Saurabh Jha, Zbigniew Kalbarczyk, Ravishankar K. Iyer. 629-641 [doi]
- UniLMv2: Pseudo-Masked Language Models for Unified Language Model Pre-TrainingHangbo Bao, Li Dong 0004, Furu Wei, Wenhui Wang, Nan Yang 0002, Xiaodong Liu, Yu Wang 0009, Jianfeng Gao, Songhao Piao, Ming Zhou 0001, Hsiao-Wuen Hon. 642-652 [doi]
- Fast OSCAR and OWL Regression via Safe Screening RulesRunxue Bao, Bin Gu, Heng Huang. 653-663 [doi]
- Option Discovery in the Absence of Rewards with Manifold AnalysisAmitay Bar, Ronen Talmon, Ron Meir. 664-674 [doi]
- Learning the piece-wise constant graph structure of a varying Ising modelBatiste Le Bars, Pierre Humbert, Argyris Kalogeratos, Nicolas Vayatis. 675-684 [doi]
- Frequency Bias in Neural Networks for Input of Non-Uniform DensityRonen Basri, Meirav Galun, Amnon Geifman, David W. Jacobs, Yoni Kasten, Shira Kritchman. 685-694 [doi]
- Private Query Release Assisted by Public DataRaef Bassily, Albert Cheu, Shay Moran, Aleksandar Nikolov, Jonathan R. Ullman, Steven Z. Wu. 695-703 [doi]
- ECLIPSE: An Extreme-Scale Linear Program Solver for Web-ApplicationsKinjal Basu 0001, Amol Ghoting, Rahul Mazumder, Yao Pan. 704-714 [doi]
- On Second-Order Group Influence Functions for Black-Box PredictionsSamyadeep Basu, Xuchen You, Soheil Feizi. 715-724 [doi]
- Kernel interpolation with continuous volume samplingAyoub Belhadji, Rémi Bardenet, Pierre Chainais. 725-735 [doi]
- Decoupled Greedy Learning of CNNsEugene Belilovsky, Michael Eickenberg, Edouard Oyallon. 736-745 [doi]
- The Cost-free Nature of Optimally Tuning Tikhonov Regularizers and Other Ordered SmoothersPierre Bellec, Dana Yang. 746-755 [doi]
- Defense Through Diverse DirectionsChristopher M. Bender, Yang Li 0012, Yifeng Shi, Michael K. Reiter, Junier Oliva. 756-766 [doi]
- Interference and Generalization in Temporal Difference LearningEmmanuel Bengio, Joelle Pineau, Doina Precup. 767-777 [doi]
- Preselection BanditsViktor Bengs, Eyke Hüllermeier. 778-787 [doi]
- Efficient Policy Learning from Surrogate-Loss Classification ReductionsAndrew Bennett, Nathan Kallus. 788-798 [doi]
- Training Neural Networks for and by InterpolationLeonard Berrada, Andrew Zisserman, M. Pawan Kumar. 799-809 [doi]
- Implicit differentiation of Lasso-type models for hyperparameter optimizationQuentin Bertrand, Quentin Klopfenstein, Mathieu Blondel, Samuel Vaiter, Alexandre Gramfort, Joseph Salmon. 810-821 [doi]
- Online Learning with Imperfect HintsAditya Bhaskara, Ashok Cutkosky, Ravi Kumar 0001, Manish Purohit. 822-831 [doi]
- When are Non-Parametric Methods Robust?Robi Bhattacharjee, Kamalika Chaudhuri. 832-841 [doi]
- Learning and Sampling of Atomic Interventions from ObservationsArnab Bhattacharyya 0001, Sutanu Gayen, Saravanan Kandasamy 0002, Ashwin Maran, N. Variyam Vinodchandran. 842-853 [doi]
- Near-optimal sample complexity bounds for learning Latent k-polytopes and applications to Ad-MixturesChiranjib Bhattacharyya, Ravindran Kannan. 854-863 [doi]
- Low-Rank Bottleneck in Multi-head Attention ModelsSrinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar. 864-873 [doi]
- Spectral Clustering with Graph Neural Networks for Graph PoolingFilippo Maria Bianchi, Daniele Grattarola, Cesare Alippi. 874-883 [doi]
- Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden ConfoundersIoana Bica, Ahmed M. Alaa, Mihaela van der Schaar. 884-895 [doi]
- Adversarial Robustness for CodePavol Bielik, Martin T. Vechev. 896-907 [doi]
- The Boomerang SamplerJoris Bierkens, Sebastiano Grazzi, Kengo Kamatani, Gareth Roberts. 908-918 [doi]
- Tight Bounds on Minimax Regret under Logarithmic Loss via Self-ConcordanceBlair Bilodeau, Dylan J. Foster, Daniel M. Roy 0001. 919-929 [doi]
- My Fair Bandit: Distributed Learning of Max-Min Fairness with Multi-player BanditsIlai Bistritz, Tavor Z. Baharav, Amir Leshem, Nicholas Bambos. 930-940 [doi]
- Provable guarantees for decision tree induction: the agnostic settingGuy Blanc, Jane Lange, Li-Yang Tan. 941-949 [doi]
- Fast Differentiable Sorting and RankingMathieu Blondel, Olivier Teboul, Quentin Berthet, Josip Djolonga. 950-959 [doi]
- Beyond Signal Propagation: Is Feature Diversity Necessary in Deep Neural Network Initialization?Yaniv Blumenfeld, Dar Gilboa, Daniel Soudry. 960-969 [doi]
- Modulating Surrogates for Bayesian OptimizationErik Bodin, Markus Kaiser, Ieva Kazlauskaite, Zhenwen Dai, Neill W. Campbell, Carl Henrik Ek. 970-979 [doi]
- Deep Coordination GraphsWendelin Boehmer, Vitaly Kurin, Shimon Whiteson. 980-991 [doi]
- Lorentz Group Equivariant Neural Network for Particle PhysicsAlexander Bogatskiy, Brandon M. Anderson, Jan T. Offermann, Marwah Roussi, David W. Miller, Risi Kondor. 992-1002 [doi]
- Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing for Graphs, Images and MoreAleksandar Bojchevski, Johannes Klicpera, Stephan Günnemann. 1003-1013 [doi]
- Proper Network Interpretability Helps Adversarial Robustness in ClassificationAkhilan Boopathy, Sijia Liu 0001, Gaoyuan Zhang, Cynthia Liu, Pin-Yu Chen, Shiyu Chang, Luca Daniel. 1014-1023 [doi]
- Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural NetworksBlake Bordelon, Abdulkadir Canatar, Cengiz Pehlevan. 1024-1034 [doi]
- Small Data, Big Decisions: Model Selection in the Small-Data RegimeJörg Bornschein, Francesco Visin, Simon Osindero. 1035-1044 [doi]
- Latent Variable Modelling with Hyperbolic Normalizing FlowsAvishek Joey Bose, Ariella Smofsky, Renjie Liao, Prakash Panangaden, William L. Hamilton. 1045-1055 [doi]
- Tightening Exploration in Upper Confidence Reinforcement LearningHippolyte Bourel, Odalric Maillard, Mohammad Sadegh Talebi. 1056-1066 [doi]
- Preference Modeling with Context-Dependent Salient FeaturesAmanda Bower, Laura Balzano. 1067-1077 [doi]
- Adversarial Filters of Dataset BiasesRonan Le Bras, Swabha Swayamdipta, Chandra Bhagavatula, Rowan Zellers, Matthew E. Peters, Ashish Sabharwal, Yejin Choi. 1078-1088 [doi]
- Calibration, Entropy Rates, and Memory in Language ModelsMark Braverman, Xinyi Chen, Sham M. Kakade, Karthik Narasimhan, Cyril Zhang, Yi Zhang. 1089-1099 [doi]
- Schatten Norms in Matrix Streams: Hello Sparsity, Goodbye DimensionVladimir Braverman, Robert Krauthgamer, Aditya Krishnan 0001, Roi Sinoff. 1100-1110 [doi]
- All in the Exponential Family: Bregman Duality in Thermodynamic Variational InferenceRob Brekelmans, Vaden Masrani, Frank Wood, Greg Ver Steeg, Aram Galstyan. 1111-1122 [doi]
- Estimating the Number and Effect Sizes of Non-null HypothesesJennifer Brennan, Ramya Korlakai Vinayak, Kevin Jamieson. 1123-1133 [doi]
- The FAST Algorithm for Submodular MaximizationAdam Breuer, Eric Balkanski, Yaron Singer. 1134-1143 [doi]
- GNN-FiLM: Graph Neural Networks with Feature-wise Linear ModulationMarc Brockschmidt. 1144-1152 [doi]
- TaskNorm: Rethinking Batch Normalization for Meta-LearningJohn Bronskill, Jonathan Gordon 0003, James Requeima, Sebastian Nowozin, Richard E. Turner. 1153-1164 [doi]
- Safe Imitation Learning via Fast Bayesian Reward Inference from PreferencesDaniel S. Brown, Russell Coleman, Ravi Srinivasan, Scott Niekum. 1165-1177 [doi]
- A Pairwise Fair and Community-preserving Approach to k-Center ClusteringBrian Brubach, Darshan Chakrabarti, John P. Dickerson, Samir Khuller, Aravind Srinivasan, Leonidas Tsepenekas. 1178-1189 [doi]
- Scalable Exact Inference in Multi-Output Gaussian ProcessesWessel Bruinsma, Eric Perim, William Tebbutt, J. Scott Hosking, Arno Solin, Richard E. Turner. 1190-1201 [doi]
- Online Pricing with Offline Data: Phase Transition and Inverse Square LawJinzhi Bu, David Simchi-Levi, Yunzong Xu. 1202-1210 [doi]
- Empirical Study of the Benefits of Overparameterization in Learning Latent Variable ModelsRares-Darius Buhai, Yoni Halpern, Yoon Kim, Andrej Risteski, David A. Sontag. 1211-1219 [doi]
- DeBayes: a Bayesian Method for Debiasing Network EmbeddingsMaarten Buyl, Tijl De Bie. 1220-1229 [doi]
- Structured Prediction with Partial Labelling through the Infimum LossVivien Cabannes, Alessandro Rudi, Francis R. Bach. 1230-1239 [doi]
- Online Learned Continual Compression with Adaptive Quantization ModulesLucas Caccia, Eugene Belilovsky, Massimo Caccia, Joelle Pineau. 1240-1250 [doi]
- Boosted Histogram Transform for RegressionYuchao Cai, Hanyuan Hang, Hanfang Yang, Zhouchen Lin. 1251-1261 [doi]
- On Validation and Planning of An Optimal Decision Rule with Application in Healthcare StudiesHengrui Cai, Wenbin Lu, Rui Song. 1262-1270 [doi]
- Uncertainty quantification for nonconvex tensor completion: Confidence intervals, heteroscedasticity and optimalityChangxiao Cai, H. Vincent Poor, Yuxin Chen 0002. 1271-1282 [doi]
- Provably Efficient Exploration in Policy OptimizationQi Cai, Zhuoran Yang, Chi Jin, Zhaoran Wang. 1283-1294 [doi]
- Near-linear time Gaussian process optimization with adaptive batching and resparsificationDaniele Calandriello, Luigi Carratino, Alessandro Lazaric, Michal Valko, Lorenzo Rosasco. 1295-1305 [doi]
- Poisson Learning: Graph Based Semi-Supervised Learning At Very Low Label RatesJeff Calder, Brendan Cook, Matthew Thorpe, Dejan Slepcev. 1306-1316 [doi]
- Explore, Discover and Learn: Unsupervised Discovery of State-Covering SkillsVictor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Giró i Nieto, Jordi Torres. 1317-1327 [doi]
- Logarithmic Regret for Learning Linear Quadratic Regulators EfficientlyAsaf Cassel, Alon Cohen, Tomer Koren. 1328-1337 [doi]
- Fully Parallel Hyperparameter Search: Reshaped Space-FillingMarie-Liesse Cauwet, Camille Couprie, Julien Dehos, Pauline Luc, Jérémy Rapin, Morgane Rivière, Fabien Teytaud, Olivier Teytaud, Nicolas Usunier. 1338-1348 [doi]
- Data preprocessing to mitigate bias: A maximum entropy based approachL. Elisa Celis, Vijay Keswani, Nisheeth K. Vishnoi. 1349-1359 [doi]
- Meta-learning with Stochastic Linear BanditsLeonardo Cella, Alessandro Lazaric, Massimiliano Pontil. 1360-1370 [doi]
- Description Based Text Classification with Reinforcement LearningDuo Chai, Wei Wu, Qinghong Han, Fei Wu, Jiwei Li. 1371-1382 [doi]
- Concise Explanations of Neural Networks using Adversarial TrainingPrasad Chalasani, Jiefeng Chen, Amrita Roy Chowdhury 0001, Xi Wu 0001, Somesh Jha. 1383-1391 [doi]
- Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate ShiftAlex J. Chan, Ahmed M. Alaa, Zhaozhi Qian, Mihaela van der Schaar. 1392-1402 [doi]
- Imputer: Sequence Modelling via Imputation and Dynamic ProgrammingWilliam Chan, Chitwan Saharia, Geoffrey E. Hinton, Mohammad Norouzi 0002, Navdeep Jaitly. 1403-1413 [doi]
- Optimizing for the Future in Non-Stationary MDPsYash Chandak, Georgios Theocharous, Shiv Shankar, Martha White, Sridhar Mahadevan, Philip S. Thomas. 1414-1425 [doi]
- Learning to Simulate and Design for Structural EngineeringKai-Hung Chang, Chin-Yi Cheng. 1426-1436 [doi]
- Decentralized Reinforcement Learning: Global Decision-Making via Local Economic TransactionsMichael Chang 0003, Sidhant Kaushik, S. Matthew Weinberg, Tom Griffiths, Sergey Levine. 1437-1447 [doi]
- Invariant RationalizationShiyu Chang, Yang Zhang, Mo Yu, Tommi S. Jaakkola. 1448-1458 [doi]
- Circuit-Based Intrinsic Methods to Detect OverfittingSatrajit Chatterjee, Alan Mishchenko. 1459-1468 [doi]
- Better depth-width trade-offs for neural networks through the lens of dynamical systemsVaggos Chatziafratis, Sai Ganesh Nagarajan, Ioannis Panageas. 1469-1478 [doi]
- Explainable and Discourse Topic-aware Neural Language UnderstandingYatin Chaudhary, Hinrich Schütze, Pankaj Gupta. 1479-1488 [doi]
- Uncertainty-Aware Lookahead Factor Models for Quantitative InvestingLakshay Chauhan, John Alberg, Zachary C. Lipton. 1489-1499 [doi]
- Deep Reasoning Networks for Unsupervised Pattern De-mixing with Constraint ReasoningDi Chen, Yiwei Bai, Wenting Zhao, Sebastian Ament, John M. Gregoire, Carla P. Gomes. 1500-1509 [doi]
- Self-PU: Self Boosted and Calibrated Positive-Unlabeled TrainingXuxi Chen, Wuyang Chen, Tianlong Chen, Ye Yuan, Chen Gong, Kewei Chen 0001, Zhangyang Wang. 1510-1519 [doi]
- Learning To Stop While Learning To PredictXinshi Chen, Hanjun Dai, Yu Li 0006, Xin Gao, Le Song. 1520-1530 [doi]
- Combinatorial Pure Exploration for Dueling BanditWei Chen, Yihan Du, Longbo Huang, Haoyu Zhao. 1531-1541 [doi]
- Graph Optimal Transport for Cross-Domain AlignmentLiqun Chen, Zhe Gan, Yu Cheng 0001, Linjie Li, Lawrence Carin, Jingjing Liu 0001. 1542-1553 [doi]
- Stabilizing Differentiable Architecture Search via Perturbation-based RegularizationXiangning Chen, Cho-Jui Hsieh. 1554-1565 [doi]
- Mapping natural-language problems to formal-language solutions using structured neural representationsKezhen Chen, Qiuyuan Huang, Hamid Palangi, Paul Smolensky, Kenneth D. Forbus, Jianfeng Gao. 1566-1575 [doi]
- Convolutional Kernel Networks for Graph-Structured DataDexiong Chen, Laurent Jacob, Julien Mairal. 1576-1586 [doi]
- Learning Flat Latent Manifolds with VAEsNutan Chen, Alexej Klushyn, Francesco Ferroni, Justin Bayer, Patrick van der Smagt. 1587-1596 [doi]
- A Simple Framework for Contrastive Learning of Visual RepresentationsTing Chen, Simon Kornblith, Mohammad Norouzi 0002, Geoffrey E. Hinton. 1597-1607 [doi]
- Retro*: Learning Retrosynthetic Planning with Neural Guided A* SearchBinghong Chen, Chengtao Li, Hanjun Dai, Le Song. 1608-1616 [doi]
- Differentiable Product Quantization for End-to-End Embedding CompressionTing Chen, Lala Li, Yizhou Sun. 1617-1626 [doi]
- On Efficient Constructions of CheckpointsYu Chen 0036, Zhenming Liu, Bin Ren, Xin Jin. 1627-1636 [doi]
- Angular Visual HardnessBeidi Chen, Weiyang Liu, Zhiding Yu, Jan Kautz, Anshumali Shrivastava, Animesh Garg, Animashree Anandkumar. 1637-1648 [doi]
- Estimating the Error of Randomized Newton Methods: A Bootstrap ApproachJessie X. T. Chen, Miles E. Lopes. 1649-1659 [doi]
- VFlow: More Expressive Generative Flows with Variational Data AugmentationJianfei Chen 0001, Cheng Lu, Biqi Chenli, Jun Zhu, Tian Tian 0001. 1660-1669 [doi]
- More Data Can Expand The Generalization Gap Between Adversarially Robust and Standard ModelsLin Chen, Yifei Min, Mingrui Zhang, Amin Karbasi. 1670-1680 [doi]
- An Accelerated DFO Algorithm for Finite-sum Convex FunctionsYuwen Chen, Antonio Orvieto, Aurélien Lucchi. 1681-1690 [doi]
- Generative Pretraining From PixelsMark Chen, Alec Radford, Rewon Child, Jeffrey Wu 0003, Heewoo Jun, David Luan, Ilya Sutskever. 1691-1703 [doi]
- Negative Sampling in Semi-Supervised learningJohn Chen, Vatsal Shah, Anastasios Kyrillidis. 1704-1714 [doi]
- Optimization from Structured Samples for Coverage FunctionsWei Chen 0013, Xiaoming Sun, Jialin Zhang, Zhijie Zhang. 1715-1724 [doi]
- Simple and Deep Graph Convolutional NetworksMing Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, Yaliang Li. 1725-1735 [doi]
- On Breaking Deep Generative Model-based Defenses and BeyondYanzhi Chen, Renjie Xie, Zhanxing Zhu. 1736-1745 [doi]
- Automated Synthetic-to-Real GeneralizationWuyang Chen, Zhiding Yu, Zhangyang Wang, Animashree Anandkumar. 1746-1756 [doi]
- (Locally) Differentially Private Combinatorial Semi-BanditsXiaoyu Chen, Kai Zheng, Zixin Zhou, Yunchang Yang, Wei Chen, Liwei Wang. 1757-1767 [doi]
- High-dimensional Robust Mean Estimation via Gradient DescentYu Cheng 0002, Ilias Diakonikolas, Rong Ge 0001, Mahdi Soltanolkotabi. 1768-1778 [doi]
- CLUB: A Contrastive Log-ratio Upper Bound of Mutual InformationPengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, Lawrence Carin. 1779-1788 [doi]
- Learning with Bounded Instance and Label-dependent Label NoiseJiacheng Cheng, Tongliang Liu, Kotagiri Ramamohanarao, Dacheng Tao. 1789-1799 [doi]
- Mutual Transfer Learning for Massive DataChing-Wei Cheng, Xingye Qiao, Guang Cheng. 1800-1809 [doi]
- Stochastic Gradient and Langevin ProcessesXiang Cheng, Dong Yin, Peter L. Bartlett, Michael I. Jordan. 1810-1819 [doi]
- Representation Learning via Adversarially-Contrastive Optimal TransportAnoop Cherian, Shuchin Aeron. 1820-1830 [doi]
- Convergence Rates of Variational Inference in Sparse Deep LearningBadr-Eddine Chérief-Abdellatif. 1831-1842 [doi]
- Reinforcement Learning for Non-Stationary Markov Decision Processes: The Blessing of (More) OptimismWang Chi Cheung, David Simchi-Levi, Ruihao Zhu. 1843-1854 [doi]
- Streaming Coresets for Symmetric Tensor FactorizationRachit Chhaya, Jayesh Choudhari, Anirban Dasgupta 0001, Supratim Shit. 1855-1865 [doi]
- On Coresets for Regularized RegressionRachit Chhaya, Anirban Dasgupta 0001, Supratim Shit. 1866-1876 [doi]
- How to Solve Fair k-Center in Massive Data ModelsAshish Chiplunkar, Sagar Kale, Sivaramakrishnan Natarajan Ramamoorthy. 1877-1886 [doi]
- Fair Generative Modeling via Weak SupervisionKristy Choi, Aditya Grover, Trisha Singh, Rui Shu, Stefano Ermon. 1887-1898 [doi]
- Encoding Musical Style with Transformer AutoencodersKristy Choi, Curtis Hawthorne, Ian Simon, Monica Dinculescu, Jesse H. Engel. 1899-1908 [doi]
- k-means++: few more steps yield constant approximationDavin Choo, Christoph Grunau, Julian Portmann, Václav Rozhon. 1909-1917 [doi]
- Stochastic Flows and Geometric Optimization on the Orthogonal GroupKrzysztof Choromanski, David Cheikhi, Jared Davis, Valerii Likhosherstov, Achille Nazaret, Achraf Bahamou, Xingyou Song, Mrugank Akarte, Jack Parker-Holder, Jacob Bergquist, Yuan Gao, Aldo Pacchiano, Tamás Sarlós, Adrian Weller, Vikas Sindhwani. 1918-1928 [doi]
- Unbiased Risk Estimators Can Mislead: A Case Study of Learning with Complementary LabelsYu-Ting Chou, Gang Niu 0001, Hsuan-Tien Lin, Masashi Sugiyama. 1929-1938 [doi]
- Data-Dependent Differentially Private Parameter Learning for Directed Graphical ModelsAmrita Roy Chowdhury 0001, Theodoros Rekatsinas, Somesh Jha. 1939-1951 [doi]
- Online Continual Learning from Imbalanced DataAristotelis Chrysakis, Marie-Francine Moens. 1952-1961 [doi]
- Distance Metric Learning with Joint Representation DiversificationXu Chu, Yang Lin, Yasha Wang, Xiting Wang, Hailong Yu, Xin Gao, Qi Tong. 1962-1973 [doi]
- 1, ∞-norm BallDejun Chu, Changshui Zhang, Shiliang Sun, Qing Tao. 1974-1983 [doi]
- Estimating Generalization under Distribution Shifts via Domain-Invariant RepresentationsChing-Yao Chuang, Antonio Torralba 0001, Stefanie Jegelka. 1984-1994 [doi]
- Scalable and Efficient Comparison-based Search without FeaturesDaniyar Chumbalov, Lucas Maystre, Matthias Grossglauser. 1995-2005 [doi]
- Feature-map-level Online Adversarial Knowledge DistillationInseop Chung, Seonguk Park, Jangho Kim, Nojun Kwak. 2006-2015 [doi]
- Teaching with Limited Information on the Learner's BehaviourFerdinando Cicalese, Sergio Filho, Eduardo Sany Laber, Marco Molinaro. 2016-2026 [doi]
- Deep Divergence LearningHatice Kubra Cilingir, Rachel Manzelli, Brian Kulis. 2027-2037 [doi]
- Model Fusion with Kullback-Leibler DivergenceSebastian Claici, Mikhail Yurochkin, Soumya Ghosh, Justin Solomon 0001. 2038-2047 [doi]
- Leveraging Procedural Generation to Benchmark Reinforcement LearningKarl Cobbe, Christopher Hesse, Jacob Hilton, John Schulman. 2048-2056 [doi]
- Composable Sketches for Functions of Frequencies: Beyond the Worst CaseEdith Cohen, Ofir Geri, Rasmus Pagh. 2057-2067 [doi]
- Healing Products of Gaussian Process ExpertsSamuel Cohen, Rendani Mbuvha, Tshilidzi Marwala, Marc Peter Deisenroth. 2068-2077 [doi]
- On Efficient Low Distortion Ultrametric EmbeddingVincent Cohen-Addad, Karthik C. S., Guillaume Lagarde. 2078-2088 [doi]
- Sub-linear Memory Sketches for Near Neighbor Search on Streaming DataBenjamin Coleman, Richard G. Baraniuk, Anshumali Shrivastava. 2089-2099 [doi]
- Word-Level Speech Recognition With a Letter to Word EncoderRonan Collobert, Awni Hannun, Gabriel Synnaeve. 2100-2110 [doi]
- Boosting Frank-Wolfe by Chasing GradientsCyrille W. Combettes, Sebastian Pokutta. 2111-2121 [doi]
- Learning Opinions in Social NetworksVincent Conitzer, Debmalya Panigrahi, Hanrui Zhang. 2122-2132 [doi]
- Relaxing Bijectivity Constraints with Continuously Indexed Normalising FlowsRobert Cornish, Anthony L. Caterini, George Deligiannidis, Arnaud Doucet. 2133-2143 [doi]
- Adaptive Region-Based Active LearningCorinna Cortes, Giulia DeSalvo, Claudio Gentile, Mehryar Mohri, Ningshan Zhang. 2144-2153 [doi]
- Online Learning with Dependent Stochastic Feedback GraphsCorinna Cortes, Giulia DeSalvo, Claudio Gentile, Mehryar Mohri, Ningshan Zhang. 2154-2163 [doi]
- Learnable Group Transform For Time-SeriesRomain Cosentino, Behnaam Aazhang. 2164-2173 [doi]
- DINO: Distributed Newton-Type Optimization MethodRixon Crane, Fred Roosta. 2174-2184 [doi]
- Causal Modeling for Fairness In Dynamical SystemsElliot Creager, David Madras, Toniann Pitassi, Richard S. Zemel. 2185-2195 [doi]
- Minimally distorted Adversarial Examples with a Fast Adaptive Boundary AttackFrancesco Croce, Matthias Hein 0001. 2196-2205 [doi]
- Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacksFrancesco Croce, Matthias Hein 0001. 2206-2216 [doi]
- Real-Time Optimisation for Online Learning in AuctionsLorenzo Croissant, Marc Abeille, Clément Calauzenes. 2217-2226 [doi]
- Privately detecting changes in unknown distributionsRachel Cummings, Sara Krehbiel, Yuliia Lut, Wanrong Zhang. 2227-2237 [doi]
- Flexible and Efficient Long-Range Planning Through Curious ExplorationAidan Curtis, Minjian Xin, Dilip Arumugam, Kevin T. Feigelis, Daniel Yamins. 2238-2249 [doi]
- Parameter-free, Dynamic, and Strongly-Adaptive Online LearningAshok Cutkosky. 2250-2259 [doi]
- Momentum Improves Normalized SGDAshok Cutkosky, Harsh Mehta. 2260-2268 [doi]
- Supervised Quantile Normalization for Low Rank Matrix FactorizationMarco Cuturi, Olivier Teboul, Jonathan Niles-Weed, Jean-Philippe Vert. 2269-2279 [doi]
- Double Trouble in Double Descent: Bias and Variance(s) in the Lazy RegimeStéphane d'Ascoli, Maria Refinetti, Giulio Biroli, Florent Krzakala. 2280-2290 [doi]
- R2-B2: Recursive Reasoning-Based Bayesian Optimization for No-Regret Learning in GamesZhongxiang Dai, Yizhou Chen, Bryan Kian Hsiang Low, Patrick Jaillet, Teck Hua Ho. 2291-2301 [doi]
- Scalable Deep Generative Modeling for Sparse GraphsHanjun Dai, Azade Nazi, Yujia Li, Bo Dai, Dale Schuurmans. 2302-2312 [doi]
- The Usual Suspects? Reassessing Blame for VAE Posterior CollapseBin Dai, Ziyu Wang 0006, David P. Wipf. 2313-2322 [doi]
- Confidence Sets and Hypothesis Testing in a Likelihood-Free Inference SettingNiccolò Dalmasso, Rafael Izbicki, Ann B. Lee. 2323-2334 [doi]
- Goodness-of-Fit Tests for Inhomogeneous Random GraphsSoham Dan, Bhaswar B. Bhattacharya. 2335-2344 [doi]
- Sharp Statistical Guaratees for Adversarially Robust Gaussian ClassificationChen Dan 0001, Yuting Wei, Pradeep Ravikumar. 2345-2355 [doi]
- Adversarial Attacks on Probabilistic Autoregressive Forecasting ModelsRaphaël Dang-Nhu, Gagandeep Singh 0001, Pavol Bielik, Martin T. Vechev. 2356-2365 [doi]
- Subspace Fitting Meets Regression: The Effects of Supervision and Orthonormality Constraints on Double Descent of Generalization ErrorsYehuda Dar, Paul Mayer, Lorenzo Luzi, Richard G. Baraniuk. 2366-2375 [doi]
- Probing Emergent Semantics in Predictive Agents via Question AnsweringAbhishek Das, Federico Carnevale, Hamza Merzic, Laura Rimell, Rosalia Schneider, Josh Abramson, Alden Hung, Arun Ahuja, Stephen Clark, Greg Wayne, Felix Hill. 2376-2391 [doi]
- Low-Variance and Zero-Variance Baselines for Extensive-Form GamesTrevor Davis 0001, Martin Schmid, Michael Bowling. 2392-2401 [doi]
- Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid Flow PredictionFilipe de Avila Belbute-Peres, Thomas D. Economon, J. Zico Kolter. 2402-2411 [doi]
- Representing Unordered Data Using Complex-Weighted Multiset AutomataJustin DeBenedetto, David Chiang 0001. 2412-2420 [doi]
- An end-to-end Differentially Private Latent Dirichlet Allocation Using a Spectral AlgorithmChris Decarolis, Mukul Ram, Seyed Esmaeili, Yu-Xiang Wang, Furong Huang. 2421-2431 [doi]
- Gamification of Pure Exploration for Linear BanditsRémy Degenne, Pierre Ménard, Xuedong Shang, Michal Valko. 2432-2442 [doi]
- Structure Adaptive Algorithms for Stochastic BanditsRémy Degenne, Han Shao, Wouter M. Koolen. 2443-2452 [doi]
- Randomly Projected Additive Gaussian Processes for RegressionIan A. Delbridge, David Bindel, Andrew Gordon Wilson. 2453-2463 [doi]
- Interpreting Robust Optimization via Adversarial Influence FunctionsZhun Deng, Cynthia Dwork, Jialiang Wang, Linjun Zhang. 2464-2473 [doi]
- Non-convex Learning via Replica Exchange Stochastic Gradient MCMCWei Deng, Qi Feng, Liyao Gao, Faming Liang, Guang Lin. 2474-2483 [doi]
- Towards Understanding the Dynamics of the First-Order AdversariesZhun Deng, Hangfeng He, Jiaoyang Huang, Weijie J. Su. 2484-2493 [doi]
- Robust Pricing in Dynamic Mechanism DesignYuan Deng, Sébastien Lahaie, Vahab S. Mirrokni. 2494-2503 [doi]
- A Swiss Army Knife for Minimax Optimal TransportSofien Dhouib, Ievgen Redko, Tanguy Kerdoncuff, Rémi Emonet, Marc Sebban. 2504-2513 [doi]
- Margin-aware Adversarial Domain Adaptation with Optimal TransportSofien Dhouib, Ievgen Redko, Carole Lartizien. 2514-2524 [doi]
- Enhancing Simple Models by Exploiting What They Already KnowAmit Dhurandhar, Karthikeyan Shanmugam, Ronny Luss. 2525-2534 [doi]
- Spectral Frank-Wolfe Algorithm: Strict Complementarity and Linear ConvergenceLijun Ding, Yingjie Fei, Qiantong Xu, Chengrun Yang. 2535-2544 [doi]
- Generalization Guarantees for Sparse Kernel Approximation with Entropic Optimal FeaturesLiang Ding, Rui Tuo, Shahin Shahrampour. 2545-2555 [doi]
- Layered Sampling for Robust Optimization ProblemsHu Ding, Zixiu Wang. 2556-2566 [doi]
- Growing Adaptive Multi-hyperplane MachinesNemanja Djuric, Zhuang Wang, Slobodan Vucetic. 2567-2576 [doi]
- Inexact Tensor Methods with Dynamic AccuraciesNikita Doikov, Yurii E. Nesterov. 2577-2586 [doi]
- Provable Smoothness Guarantees for Black-Box Variational InferenceJustin Domke. 2587-2596 [doi]
- Optimal Differential Privacy Composition for Exponential MechanismsJinshuo Dong, David Durfee, Ryan Rogers 0002. 2597-2606 [doi]
- Multinomial Logit Bandit with Low Switching CostKefan Dong, Yingkai Li, Qin Zhang, Yuan Zhou 0007. 2607-2615 [doi]
- Towards Adaptive Residual Network Training: A Neural-ODE PerspectiveChengyu Dong, Liyuan Liu, Zichao Li, Jingbo Shang. 2616-2626 [doi]
- On the Expressivity of Neural Networks for Deep Reinforcement LearningKefan Dong, Yuping Luo, Tianhe Yu, Chelsea Finn, Tengyu Ma. 2627-2637 [doi]
- Collapsed Amortized Variational Inference for Switching Nonlinear Dynamical SystemsZhe Dong, Bryan A. Seybold, Kevin Murphy 0002, Hung H. Bui. 2638-2647 [doi]
- Expert Learning through Generalized Inverse Multiobjective Optimization: Models, Insights, and AlgorithmsChaosheng Dong, Bo Zeng. 2648-2657 [doi]
- The Complexity of Finding Stationary Points with Stochastic Gradient DescentYoel Drori, Ohad Shamir. 2658-2667 [doi]
- Optimal Non-parametric Learning in Repeated Contextual Auctions with Strategic BuyerAlexey Drutsa. 2668-2677 [doi]
- Reserve Pricing in Repeated Second-Price Auctions with Strategic BiddersAlexey Drutsa. 2678-2689 [doi]
- NGBoost: Natural Gradient Boosting for Probabilistic PredictionTony Duan, Avati Anand, Daisy Yi Ding, Khanh K. Thai, Sanjay Basu, Andrew Y. Ng, Alejandro Schuler. 2690-2700 [doi]
- Minimax-Optimal Off-Policy Evaluation with Linear Function ApproximationYaqi Duan, Zeyu Jia, Mengdi Wang. 2701-2709 [doi]
- Online Bayesian Moment Matching based SAT Solver HeuristicsHaonan Duan, Saeed Nejati, George Trimponias, Pascal Poupart, Vijay Ganesh. 2710-2719 [doi]
- Familywise Error Rate Control by Interactive UnmaskingBoyan Duan, Aaditya Ramdas, Larry A. Wasserman. 2720-2729 [doi]
- Cooperative Multi-Agent Bandits with Heavy TailsAbhimanyu Dubey, Alex 'Sandy' Pentland. 2730-2739 [doi]
- Kernel Methods for Cooperative Multi-Agent Contextual BanditsAbhimanyu Dubey, Alex 'Sandy' Pentland. 2740-2750 [doi]
- Optimization Theory for ReLU Neural Networks Trained with Normalization LayersYonatan Dukler, Quanquan Gu, Guido Montúfar. 2751-2760 [doi]
- Equivariant Neural RenderingEmilien Dupont, Miguel Bautista Martin, Alex Colburn, Aditya Sankar, Josh M. Susskind, Qi Shan. 2761-2770 [doi]
- On Contrastive Learning for Likelihood-free InferenceConor Durkan, Iain Murray 0001, George Papamakarios. 2771-2781 [doi]
- Efficient and Scalable Bayesian Neural Nets with Rank-1 FactorsMichael Dusenberry, Ghassen Jerfel, Yeming Wen, Yian Ma, Jasper Snoek, Katherine A. Heller, Balaji Lakshminarayanan, Dustin Tran. 2782-2792 [doi]
- Sparse Gaussian Processes with Spherical Harmonic FeaturesVincent Dutordoir, Nicolas Durrande, James Hensman. 2793-2802 [doi]
- Is There a Trade-Off Between Fairness and Accuracy? A Perspective Using Mismatched Hypothesis TestingSanghamitra Dutta, Dennis Wei, Hazar Yueksel, Pin-Yu Chen, Sijia Liu 0001, Kush R. Varshney. 2803-2813 [doi]
- Self-Concordant Analysis of Frank-Wolfe AlgorithmsPavel E. Dvurechensky, Petr Ostroukhov, Kamil Safin, Shimrit Shtern, Mathias Staudigl. 2814-2824 [doi]
- Estimating Q(s, s') with Deep Deterministic Dynamics GradientsAshley D. Edwards, Himanshu Sahni, Rosanne Liu, Jane Hung, Ankit Jain, Rui Wang 0052, Adrien Ecoffet, Thomas Miconi, Charles Isbell, Jason Yosinski. 2825-2835 [doi]
- Training Linear Neural Networks: Non-Local Convergence and Complexity ResultsArmin Eftekhari. 2836-2847 [doi]
- Student-Teacher Curriculum Learning via Reinforcement Learning: Predicting Hospital Inpatient Admission LocationRasheed El-Bouri, David Eyre, Peter J. Watkinson, Tingting Zhu, David A. Clifton. 2848-2857 [doi]
- Decision Trees for Decision-Making under the Predict-then-Optimize FrameworkAdam N. Elmachtoub, Jason Cheuk Nam Liang, Ryan McNellis. 2858-2867 [doi]
- Revisiting Spatial Invariance with Low-Rank Local ConnectivityGamaleldin F. Elsayed, Prajit Ramachandran, Jonathon Shlens, Simon Kornblith. 2868-2879 [doi]
- Divide and Conquer: Leveraging Intermediate Feature Representations for Quantized Training of Neural NetworksAhmed Taha Elthakeb, Prannoy Pilligundla, Fatemeh Mireshghallah, Alexander Cloninger, Hadi Esmaeilzadeh. 2880-2891 [doi]
- Generalization Error of Generalized Linear Models in High DimensionsMelikasadat Emami, Mojtaba Sahraee-Ardakan, Parthe Pandit, Sundeep Rangan, Alyson K. Fletcher. 2892-2901 [doi]
- Parallel Algorithm for Non-Monotone DR-Submodular MaximizationAlina Ene, Huy L. Nguyen. 2902-2911 [doi]
- Continuous Time Bayesian Networks with ClocksNicolai Engelmann, Dominik Linzner, Heinz Koeppl. 2912-2921 [doi]
- Identifying Statistical Bias in Dataset ReplicationLogan Engstrom, Andrew Y. Ilyas, Shibani Santurkar, Dimitris Tsipras, Jacob Steinhardt, Aleksander Madry. 2922-2932 [doi]
- Distributed Online Optimization over a Heterogeneous Network with Any-Batch Mirror DescentNima Eshraghi, Ben Liang. 2933-2942 [doi]
- Rigging the Lottery: Making All Tickets WinnersUtku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, Erich Elsen. 2943-2952 [doi]
- Faster Graph Embeddings via CoarseningMatthew Fahrbach, Gramoz Goranci, Richard Peng, Sushant Sachdeva, Chi Wang. 2953-2963 [doi]
- Latent Bernoulli AutoencoderJiri Fajtl, Vasileios Argyriou, Dorothy Monekosso, Paolo Remagnino. 2964-2974 [doi]
- Optimal Sequential Maximization: One Interview is Enough!Moein Falahatgar, Alon Orlitsky, Venkatadheeraj Pichapati. 2975-2984 [doi]
- Spectral Graph Matching and Regularized Quadratic Relaxations: Algorithm and TheoryZhou Fan, Cheng Mao, Yihong Wu 0001, Jiaming Xu. 2985-2995 [doi]
- On hyperparameter tuning in general clustering problemsmXinjie Fan, Yuguang Yue, Purnamrita Sarkar, Y. X. Rachel Wang. 2996-3007 [doi]
- Online mirror descent and dual averaging: keeping pace in the dynamic caseHuang Fang, Nick Harvey, Victor S. Portella, Michael P. Friedlander. 3008-3017 [doi]
- Stochastic Regret Minimization in Extensive-Form GamesGabriele Farina, Christian Kroer, Tuomas Sandholm. 3018-3028 [doi]
- Do GANs always have Nash equilibria?Farzan Farnia, Asuman E. Ozdaglar. 3029-3039 [doi]
- Growing Action SpacesGregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, Gabriel Synnaeve. 3040-3051 [doi]
- Improved Optimistic Algorithms for Logistic BanditsLouis Faury, Marc Abeille, Clément Calauzènes, Olivier Fercoq. 3052-3060 [doi]
- Revisiting Fundamentals of Experience ReplayWilliam Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark Rowland, Will Dabney. 3061-3071 [doi]
- Learning with Multiple Complementary LabelsLei Feng, Takuo Kaneko, Bo Han 0003, Gang Niu 0001, Bo An 0001, Masashi Sugiyama. 3072-3081 [doi]
- Global Concavity and Optimization in a Class of Dynamic Discrete Choice ModelsYiding Feng, Ekaterina Khmelnitskaya, Denis Nekipelov. 3082-3091 [doi]
- The Intrinsic Robustness of Stochastic Bandits to Strategic ManipulationZhe Feng 0004, David C. Parkes, Haifeng Xu. 3092-3101 [doi]
- Accountable Off-Policy Evaluation With Kernel Bellman StatisticsYihao Feng, Tongzheng Ren, Ziyang Tang, Qiang Liu. 3102-3111 [doi]
- Kernelized Stein Discrepancy Tests of Goodness-of-fit for Time-to-Event DataTamara Fernandez, Nicolas Rivera, Wenkai Xu, Arthur Gretton. 3112-3122 [doi]
- Why Are Learned Indexes So Effective?Paolo Ferragina, Fabrizio Lillo, Giorgio Vinciguerra. 3123-3132 [doi]
- Implicit Learning Dynamics in Stackelberg Games: Equilibria Characterization, Convergence Analysis, and Empirical StudyTanner Fiez, Benjamin Chasnov, Lillian J. Ratliff. 3133-3144 [doi]
- Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts?Angelos Filos, Panagiotis Tigkas, Rowan McAllister, Nicholas Rhinehart, Sergey Levine, Yarin Gal. 3145-3153 [doi]
- How to Train Your Neural ODE: the World of Jacobian and Kinetic RegularizationChris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, Adam M. Oberman. 3154-3164 [doi]
- Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous DataMarc Finzi, Samuel Stanton, Pavel Izmailov, Andrew Gordon Wilson. 3165-3176 [doi]
- Information Particle Filter Tree: An Online Algorithm for POMDPs with Belief-Based Rewards on Continuous DomainsJohannes Fischer 0007, Ömer Sahin Tas. 3177-3187 [doi]
- Topic Modeling via Full Dependence MixturesDan Fisher, Mark Kozdoba, Shie Mannor. 3188-3198 [doi]
- Beyond UCB: Optimal and Efficient Contextual Bandits with Regression OraclesDylan J. Foster, Alexander Rakhlin. 3199-3210 [doi]
- Logarithmic Regret for Adversarial Online ControlDylan J. Foster, Max Simchowitz. 3211-3221 [doi]
- p-Norm Flow Diffusion for Local Graph ClusteringKimon Fountoulakis, Di Wang 0005, Shenghao Yang. 3222-3232 [doi]
- Stochastic Latent Residual Video PredictionJean-Yves Franceschi, Edouard Delasalles, Mickaël Chen, Sylvain Lamprier, Patrick Gallinari. 3233-3246 [doi]
- Leveraging Frequency Analysis for Deep Fake Image RecognitionJoel Frank, Thorsten Eisenhofer, Lea Schönherr, Asja Fischer, Dorothea Kolossa, Thorsten Holz. 3247-3258 [doi]
- Linear Mode Connectivity and the Lottery Ticket HypothesisJonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy 0001, Michael Carbin. 3259-3269 [doi]
- No-Regret and Incentive-Compatible Online LearningRupert Freeman, David M. Pennock, Chara Podimata, Jennifer Wortman Vaughan. 3270-3279 [doi]
- Fast and Three-rious: Speeding Up Weak Supervision with Triplet MethodsDaniel Y. Fu, Mayee F. Chen, Frederic Sala, Sarah M. Hooper, Kayvon Fatahalian, Christopher Ré. 3280-3291 [doi]
- AutoGAN-Distiller: Searching to Compress Generative Adversarial NetworksYonggan Fu, Wuyang Chen, Haotao Wang, Haoran Li, Yingyan Lin, Zhangyang Wang. 3292-3303 [doi]
- Don't Waste Your Bits! Squeeze Activations and Gradients for Deep Neural Networks via TinyScriptFangcheng Fu, Yuzheng Hu, Yihan He, Jiawei Jiang, Yingxia Shao, Ce Zhang, Bin Cui 0001. 3304-3314 [doi]
- DessiLBI: Exploring Structural Sparsity of Deep Networks via Differential Inclusion PathsYanwei Fu, Chen Liu, Donghao Li, Xinwei Sun 0001, Jinshan Zeng, Yuan Yao. 3315-3326 [doi]
- Approximation Guarantees of Local Search Algorithms via Localizability of Set FunctionsKaito Fujii. 3327-3336 [doi]
- Accelerating the diffusion-based ensemble sampling by non-reversible dynamicsFutoshi Futami, Issei Sato, Masashi Sugiyama. 3337-3347 [doi]
- Stochastic bandits with arm-dependent delaysAnne Gael Manegueu, Claire Vernade, Alexandra Carpentier, Michal Valko. 3348-3356 [doi]
- Abstraction Mechanisms Predict Generalization in Deep Neural NetworksAlex Gain, Hava T. Siegelmann. 3357-3366 [doi]
- A Free-Energy Principle for Representation LearningYansong Gao, Pratik Chaudhari. 3367-3376 [doi]
- Can Stochastic Zeroth-Order Frank-Wolfe Method Converge Faster for Non-Convex Problems?Hongchang Gao, Heng Huang. 3377-3386 [doi]
- Online Convex Optimization in the Random Order ModelDan Garber, Gal Korcia, Kfir Y. Levy. 3387-3396 [doi]
- Symbolic Network: Generalized Neural Policies for Relational MDPsSankalp Garg, Aniket Bajpai, Mausam. 3397-3407 [doi]
- Predicting deliberative outcomesVikas K. Garg, Tommi S. Jaakkola. 3408-3418 [doi]
- Generalization and Representational Limits of Graph Neural NetworksVikas Garg, Stefanie Jegelka, Tommi Jaakkola. 3419-3430 [doi]
- Deep PQR: Solving Inverse Reinforcement Learning using Anchor ActionsSinong Geng, Houssam Nassif, Carlos A. Manzanares, A. Max Reppen, Ronnie Sircar. 3431-3441 [doi]
- Multilinear Latent Conditioning for Generating Unseen Attribute CombinationsMarkos Georgopoulos, Grigorios Chrysos 0002, Maja Pantic, Yannis Panagakis. 3442-3451 [doi]
- Generalisation error in learning with random features and the hidden manifold modelFederica Gerace, Bruno Loureiro, Florent Krzakala, Marc Mézard, Lenka Zdeborová. 3452-3462 [doi]
- Black-Box Methods for Restoring MonotonicityEvangelia Gergatsouli, Brendan Lucier, Christos Tzamos. 3463-3473 [doi]
- Online Multi-Kernel Learning with Graph-Structured FeedbackPouya M. Ghari, Yanning Shen. 3474-3483 [doi]
- Task-Oriented Active Perception and Planning in Environments with Partially Known SemanticsMahsa Ghasemi, Erdem Bulgur, Ufuk Topcu. 3484-3493 [doi]
- Characterizing Distribution Equivalence and Structure Learning for Cyclic and Acyclic Directed GraphsAmirEmad Ghassami, Alan Yang, Negar Kiyavash, Kun Zhang. 3494-3504 [doi]
- Private Counting from Anonymous Messages: Near-Optimal Accuracy with Vanishing Communication OverheadBadih Ghazi, Ravi Kumar 0001, Pasin Manurangsi, Rasmus Pagh. 3505-3514 [doi]
- Aligned Cross Entropy for Non-Autoregressive Machine TranslationMarjan Ghazvininejad, Vladimir Karpukhin, Luke Zettlemoyer, Omer Levy. 3515-3523 [doi]
- Gradient Temporal-Difference Learning with Regularized CorrectionsSina Ghiassian, Andrew Patterson, Shivam Garg 0006, Dhawal Gupta, Adam White, Martha White. 3524-3534 [doi]
- A Distributional Framework For Data ValuationAmirata Ghorbani, Michael P. Kim, James Zou 0001. 3535-3544 [doi]
- Fractal Gaussian Networks: A sparse random graph model based on Gaussian Multiplicative ChaosSubhroshekhar Ghosh, Krishnakumar Balasubramanian, Xiaochuan Yang. 3545-3555 [doi]
- Representations for Stable Off-Policy Reinforcement LearningDibya Ghosh, Marc G. Bellemare. 3556-3565 [doi]
- Adaptive Sketching for Fast and Convergent Canonical Polyadic DecompositionAlex Gittens, Kareem S. Aggour, Bülent Yener. 3566-3575 [doi]
- One Size Fits All: Can We Train One Denoiser for All Noise Levels?Abhiram Gnanasambandam, Stanley H. Chan. 3576-3586 [doi]
- Superpolynomial Lower Bounds for Learning One-Layer Neural Networks using Gradient DescentSurbhi Goel, Aravind Gollakota, Zhihan Jin, Sushrut Karmalkar, Adam R. Klivans. 3587-3596 [doi]
- SimGANs: Simulator-Based Generative Adversarial Networks for ECG Synthesis to Improve Deep ECG ClassificationTomer Golany, Kira Radinsky, Daniel Freedman. 3597-3606 [doi]
- Unraveling Meta-Learning: Understanding Feature Representations for Few-Shot TasksMicah Goldblum, Steven Reich, Liam Fowl, Renkun Ni, Valeriia Cherepanova, Tom Goldstein. 3607-3616 [doi]
- Towards a General Theory of Infinite-Width Limits of Neural ClassifiersEugene Golikov. 3617-3626 [doi]
- Differentially Private Set UnionSivakanth Gopi, Pankaj Gulhane, Janardhan Kulkarni, Judy Hanwen Shen, Milad Shokouhi, Sergey Yekhanin. 3627-3636 [doi]
- The continuous categorical: a novel simplex-valued exponential familyElliott Gordon-Rodriguez, Gabriel Loaiza-Ganem, John P. Cunningham. 3637-3647 [doi]
- Automatic Reparameterisation of Probabilistic ProgramsMaria I. Gorinova, Dave Moore, Matthew D. Hoffman. 3648-3657 [doi]
- Interpretable Off-Policy Evaluation in Reinforcement Learning by Highlighting Influential TransitionsOmer Gottesman, Joseph Futoma, Yao Liu 0009, Sonali Parbhoo, Leo A. Celi, Emma Brunskill, Finale Doshi-Velez. 3658-3667 [doi]
- Learning to Navigate The Synthetically Accessible Chemical Space Using Reinforcement LearningSai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu, Shengchao Liu, Simon Blackburn, Karam M. J. Thomas, Connor W. Coley, Jian Tang, Sarath Chandar, Yoshua Bengio. 3668-3679 [doi]
- Ordinal Non-negative Matrix Factorization for RecommendationOlivier Gouvert, Thomas Oberlin, Cédric Févotte. 3680-3689 [doi]
- PoWER-BERT: Accelerating BERT Inference via Progressive Word-vector EliminationSaurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan T. Chakaravarthy, Yogish Sabharwal, Ashish Verma. 3690-3699 [doi]
- PackIt: A Virtual Environment for Geometric PlanningAnkit Goyal, Jia Deng. 3700-3710 [doi]
- DROCC: Deep Robust One-Class ClassificationSachin Goyal, Aditi Raghunathan, Moksh Jain, Harsha Vardhan Simhadri, Prateek Jain 0002. 3711-3721 [doi]
- Scalable Gaussian Process Separation for Kernels with a Non-Stationary PhaseJan Graßhoff, Alexandra Jankowski, Philipp Rostalski. 3722-3731 [doi]
- Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without SamplingWill Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Richard S. Zemel. 3732-3747 [doi]
- On the Iteration Complexity of Hypergradient ComputationRiccardo Grazzi, Luca Franceschi, Massimiliano Pontil, Saverio Salzo. 3748-3758 [doi]
- Robust Learning with the {HDaniel Greenfeld, Uri Shalit. 3759-3768 [doi]
- {MJean-Bastien grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioannis Antonoglou, Remi Munos. 3769-3778 [doi]
- Near-Tight Margin-Based Generalization Bounds for Support Vector MachinesAllan Grønlund, Lior Kamma, Kasper Green Larsen. 3779-3788 [doi]
- Implicit Geometric Regularization for Learning ShapesAmos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, Yaron Lipman. 3789-3799 [doi]
- Improving the Gating Mechanism of Recurrent Neural NetworksAlbert Gu, Çaglar Gülçehre, Thomas Paine, Matt Hoffman 0001, Razvan Pascanu. 3800-3809 [doi]
- Recurrent Hierarchical Topic-Guided {RNNDandan Guo, Bo Chen 0001, Ruiying Lu, Mingyuan Zhou. 3810-3821 [doi]
- Breaking the Curse of Space Explosion: Towards Efficient {NASYong Guo, Yaofo Chen, Yin Zheng, Peilin Zhao, Jian Chen 0011, JunZhou Huang, Mingkui Tan. 3822-3831 [doi]
- Certified Data Removal from Machine Learning ModelsChuan Guo, Tom Goldstein, Awni Y. Hannun, Laurens van der Maaten. 3832-3842 [doi]
- {LTFJiaxian Guo, Mingming Gong, Tongliang Liu, Kun Zhang 0001, Dacheng Tao. 3843-3853 [doi]
- Learning to Branch for Multi-Task LearningPengsheng Guo, Chen-Yu Lee, Daniel Ulbricht. 3854-3863 [doi]
- Communication-Efficient Distributed Stochastic {AUCZhishuai Guo, Mingrui Liu, Zhuoning Yuan, Li Shen, Wei Liu, Tianbao Yang. 3864-3874 [doi]
- Bootstrap Latent-Predictive Representations for Multitask Reinforcement LearningZhaohan Daniel Guo, Bernardo Ávila Pires, Bilal Piot, Jean-Bastien grill, Florent Altché, Rémi Munos, Mohammad Gheshlaghi Azar. 3875-3886 [doi]
- Accelerating Large-Scale Inference with Anisotropic Vector QuantizationRuiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, Sanjiv Kumar. 3887-3896 [doi]
- Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled DataLan-Zhe Guo, Zhenyu Zhang, Yuan Jiang, Yu-Feng Li, Zhi-Hua Zhou. 3897-3906 [doi]
- Neural Topic Modeling with Continual Lifelong LearningPankaj Gupta, Yatin Chaudhary, Thomas A. Runkler, Hinrich Schütze. 3907-3917 [doi]
- Multidimensional Shape ConstraintsMaya R. Gupta, Erez Louidor, Oleksandr Mangylov, Nobu Morioka, Taman Narayan, Sen Zhao. 3918-3928 [doi]
- Retrieval Augmented Language Model Pre-TrainingKelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, Ming-Wei Chang. 3929-3938 [doi]
- Streaming Submodular Maximization under a k-Set System ConstraintRan Haba, Ehsan Kazemi 0001, Moran Feldman, Amin Karbasi. 3939-3949 [doi]
- Let's Agree to Agree: Neural Networks Share Classification Order on Real DatasetsGuy Hacohen, Leshem Choshen, Daphna Weinshall. 3950-3960 [doi]
- Optimal approximation for unconstrained non-submodular minimizationMarwa El Halabi, Stefanie Jegelka. 3961-3972 [doi]
- {FJenny Hamer, Mehryar Mohri, Ananda Theertha Suresh. 3973-3983 [doi]
- Polynomial Tensor Sketch for Element-wise Function of Low-Rank MatrixInsu Han, Haim Avron, Jinwoo Shin. 3984-3993 [doi]
- {DRWRZhizhong Han, Chao Chen, Yu-Shen Liu, Matthias Zwicker. 3994-4005 [doi]
- {SIGUABo Han 0003, Gang Niu 0001, Xingrui Yu, Quanming Yao, Miao Xu, Ivor W. Tsang, Masashi Sugiyama. 4006-4016 [doi]
- Training Binary Neural Networks through Learning with Noisy SupervisionKai Han, Yunhe Wang, Yixing Xu, Chunjing Xu, Enhua Wu, Chang Xu. 4017-4026 [doi]
- Stochastic Subspace Cubic {NFilip Hanzely, Nikita Doikov, Yurii E. Nesterov, Peter Richtárik. 4027-4038 [doi]
- Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum ProblemsFilip Hanzely, Dmitry Kovalev, Peter Richtárik. 4039-4048 [doi]
- Data Amplification: Instance-Optimal Property EstimationYi Hao, Alon Orlitsky. 4049-4059 [doi]
- Dynamic Knapsack Optimization Towards Efficient Multi-Channel Sequential AdvertisingXiaotian Hao, Zhaoqing Peng, Yi Ma, Guan Wang, Junqi Jin, Jianye Hao, Shan Chen, Rongquan Bai, Mingzhou Xie, Miao Xu, Zhenzhe Zheng, Chuan Yu, Han Li, Jian Xu, Kun Gai. 4060-4070 [doi]
- Improving generalization by controlling label-noise information in neural network weightsHrayr Harutyunyan, Kyle Reing, Greg Ver Steeg, Aram Galstyan. 4071-4081 [doi]
- A Natural Lottery Ticket Winner: Reinforcement Learning with Ordinary Neural CircuitsRamin M. Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, Radu Grosu. 4082-4093 [doi]
- {BArman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffield, Krishna Narayanan 0001, Xiaoning Qian. 4094-4104 [doi]
- {CLeonard Hasenclever, Fabio Pardo, Raia Hadsell, Nicolas Heess, Josh Merel. 4105-4115 [doi]
- Contrastive Multi-View Representation Learning on GraphsKaveh Hassani, Amir Hosein Khas Ahmadi. 4116-4126 [doi]
- Nested Subspace Arrangement for Representation of Relational DataNozomi Hata, Shizuo Kaji, Akihiro Yoshida, Katsuki Fujisawa. 4127-4137 [doi]
- The Tree Ensemble Layer: Differentiability meets Conditional ComputationHussein Hazimeh 0001, Natalia Ponomareva, Petros Mol, Zhenyu Tan, Rahul Mazumder. 4138-4148 [doi]
- Compressive sensing with un-trained neural networks: Gradient descent finds a smooth approximationReinhard Heckel, Mahdi Soltanolkotabi. 4149-4158 [doi]
- Hierarchically Decoupled Imitation For Morphological TransferDonald J. Hejna III, Lerrel Pinto, Pieter Abbeel. 4159-4171 [doi]
- Gradient-free Online Learning in Continuous Games with Delayed RewardsAmélie Héliou, Panayotis Mertikopoulos, Zhengyuan Zhou. 4172-4181 [doi]
- Data-Efficient Image Recognition with Contrastive Predictive CodingOlivier J. Hénaff. 4182-4192 [doi]
- Minimax Rate for Learning From Pairwise Comparisons in the {BTLJulien M. Hendrickx, Alex Olshevsky, Venkatesh Saligrama. 4193-4202 [doi]
- Statistically Preconditioned Accelerated Gradient Method for Distributed OptimizationHadrien Hendrikx, Lin Xiao, Sébastien Bubeck, Francis R. Bach, Laurent Massoulié. 4203-4227 [doi]
- Cost-Effective Interactive Attention Learning with Neural Attention ProcessesJay Heo, Junhyeon Park, Hyewon Jeong, Kwang joon Kim, Juho Lee, Eunho Yang, Sung Ju Hwang. 4228-4238 [doi]
- Likelihood-free {MCMCJoeri Hermans, Volodimir Begy, Gilles Louppe. 4239-4248 [doi]
- Towards Non-Parametric Drift Detection via Dynamic Adapting Window Independence Drift Detection ({DAWIDDFabian Hinder, André Artelt, Barbara Hammer. 4249-4259 [doi]
- Optimization and Analysis of the p{AGaurush Hiranandani, Warut Vijitbenjaronk, Sanmi Koyejo, Prateek Jain. 4260-4270 [doi]
- Optimizing Dynamic Structures with {BMinh Hoang, Carleton Kingsford. 4271-4281 [doi]
- Learning Task-Agnostic Embedding of Multiple Black-Box Experts for Multi-Task Model FusionTrong Nghia Hoang, Thanh Lam, Bryan Kian Hsiang Low, Patrick Jaillet. 4282-4292 [doi]
- Parameterized Rate-Distortion Stochastic EncoderQuan Hoang, Trung Le, Dinh Phung. 4293-4303 [doi]
- Topologically Densified DistributionsChristoph D. Hofer, Florian Graf, Marc Niethammer, Roland Kwitt. 4304-4313 [doi]
- Graph Filtration LearningChristoph D. Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, Roland Kwitt. 4314-4323 [doi]
- Black-Box Variational Inference as a Parametric Approximation to {LMatthew D. Hoffman, Yian Ma. 4324-4341 [doi]
- Learning Mixtures of Graphs from Epidemic CascadesJessica Hoffmann, Soumya Basu 0001, Surbhi Goel, Constantine Caramanis. 4342-4352 [doi]
- Set Functions for Time SeriesMax Horn, Michael Moor, Christian Bock, Bastian Rieck, Karsten M. Borgwardt. 4353-4363 [doi]
- Lifted Disjoint Paths with Application in Multiple Object TrackingAndrea Hornáková, Roberto Henschel, Bodo Rosenhahn, Paul Swoboda. 4364-4375 [doi]
- Infinite attention: {NNGPJiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, Roman Novak. 4376-4386 [doi]
- The Non-{IIDKevin Hsieh, Amar Phanishayee, Onur Mutlu, Phillip B. Gibbons. 4387-4398 [doi]
- "{OHengyuan Hu, Adam Lerer, Alex Peysakhovich, Jakob N. Foerster. 4399-4410 [doi]
- {XTREMEJunjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, Melvin Johnson. 4411-4421 [doi]
- Momentum-Based Policy Gradient MethodsFeihu Huang, Shangqian Gao, Jian Pei, Heng Huang. 4422-4433 [doi]
- From Importance Sampling to Doubly Robust Policy GradientJiawei Huang, Nan Jiang. 4434-4443 [doi]
- Evaluating Lossy Compression Rates of Deep Generative ModelsSicong Huang, Alireza Makhzani, Yanshuai Cao, Roger B. Grosse. 4444-4454 [doi]
- One Policy to Control Them All: Shared Modular Policies for Agent-Agnostic ControlWenlong Huang, Igor Mordatch, Deepak Pathak. 4455-4464 [doi]
- Communication-Efficient Distributed {PCALong-Kai Huang, Sinno Jialin Pan. 4465-4474 [doi]
- Improving Transformer Optimization Through Better InitializationXiao Shi Huang, Felipe Pérez, Jimmy Ba, Maksims Volkovs. 4475-4483 [doi]
- More Information Supervised Probabilistic Deep Face Embedding LearningYing Huang, Shangfeng Qiu, Wenwei Zhang, Xianghui Luo, Jinzhuo Wang. 4484-4494 [doi]
- Generating Programmatic Referring Expressions via Program SynthesisJiani Huang, Calvin Smith, Osbert Bastani, Rishabh Singh, Aws Albarghouthi, Mayur Naik. 4495-4506 [doi]
- {IYangsibo Huang, Zhao Song 0002, Kai Li, Sanjeev Arora. 4507-4518 [doi]
- Accelerated Stochastic Gradient-free and Projection-free MethodsFeihu Huang, Lue Tao, Songcan Chen. 4519-4530 [doi]
- Deep Graph Random Process for Relational-Thinking-Based Speech RecognitionHengguan Huang, Fuzhao Xue, Hao Wang, Ye Wang. 4531-4541 [doi]
- Dynamics of Deep Neural Networks and Neural Tangent HierarchyJiaoyang Huang, Horng-Tzer Yau. 4542-4551 [doi]
- Curvature-corrected learning dynamics in deep neural networksDongsung Huh. 4552-4560 [doi]
- Multigrid Neural MemoryTri Huynh, Michael Maire, Matthew R. Walter. 4561-4571 [doi]
- Meta-Learning with Shared Amortized Variational InferenceEkaterina Iakovleva, Jakob Verbeek, Karteek Alahari. 4572-4582 [doi]
- Linear Lower Bounds and Conditioning of Differentiable GamesAdam Ibrahim, Waïss Azizian, Gauthier Gidel, Ioannis Mitliagkas. 4583-4593 [doi]
- Fast Deterministic {CURYasutoshi Ida, Sekitoshi Kanai, Yasuhiro Fujiwara, Tomoharu Iwata, Koh Takeuchi, Hisashi Kashima. 4594-4603 [doi]
- Do We Need Zero Training Loss After Achieving Zero Training Error?Takashi Ishida, Ikko Yamane, Tomoya Sakai, Gang Niu 0001, Masashi Sugiyama. 4604-4614 [doi]
- Semi-Supervised Learning with Normalizing FlowsPavel Izmailov, Polina Kirichenko, Marc Finzi, Andrew Gordon Wilson. 4615-4630 [doi]
- Implicit Regularization of Random Feature ModelsArthur Jacot, Berfin Simsek, Francesco Spadaro, Clément Hongler, Franck Gabriel. 4631-4640 [doi]
- Correlation Clustering with Asymmetric Classification ErrorsJafar Jafarov, Sanchit Kalhan, Konstantin Makarychev, Yury Makarychev. 4641-4650 [doi]
- Optimal Robust Learning of Discrete Distributions from BatchesAyush Jain, Alon Orlitsky. 4651-4660 [doi]
- Generalization to New Actions in Reinforcement LearningAyush Jain, Andrew Szot, Joseph J. Lim. 4661-4672 [doi]
- Tails of {LPriyank Jaini, Ivan Kobyzev, Yaoliang Yu, Marcus Brubaker. 4673-4681 [doi]
- Learning Portable Representations for High-Level PlanningSteven James, Benjamin Rosman, George Konidaris 0001. 4682-4691 [doi]
- Debiased {SHicham Janati, Marco Cuturi, Alexandre Gramfort. 4692-4701 [doi]
- Parametric {GMartin Jankowiak, Geoff Pleiss, Jacob R. Gardner. 4702-4712 [doi]
- Inverse Active Sensing: Modeling and Understanding Timely Decision-MakingDaniel Jarrett, Mihaela van der Schaar. 4713-4723 [doi]
- Source Separation with Deep Generative PriorsVivek Jayaram, John Thickstun. 4724-4735 [doi]
- Extra-gradient with player sampling for faster convergence in n-player gamesSamy Jelassi, Carles Domingo-Enrich, Damien Scieur, Arthur Mensch, Joan Bruna. 4736-4745 [doi]
- T-{GDHyeonseong Jeon, Youngoh Bang, Junyaup Kim, Simon S. Woo. 4746-4761 [doi]
- History-Gradient Aided Batch Size Adaptation for Variance Reduced AlgorithmsKaiyi Ji, Zhe Wang, Bowen Weng, Yi Zhou, Wei Zhang, Yingbin Liang. 4762-4772 [doi]
- Information-Theoretic Local Minima Characterization and RegularizationZhiwei Jia, Hao Su 0001. 4773-4783 [doi]
- Optimizing Black-box Metrics with Adaptive SurrogatesQijia Jiang, Olaoluwa Adigun, Harikrishna Narasimhan, Mahdi Milani Fard, Maya Gupta. 4784-4793 [doi]
- {BINOCULARSShali Jiang 0001, Henry Chai, Javier Gonzalez, Roman Garnett. 4794-4803 [doi]
- Beyond Synthetic Noise: Deep Learning on Controlled Noisy LabelsLu Jiang, Di Huang, Mason Liu, Weilong Yang. 4804-4815 [doi]
- Implicit Class-Conditioned Domain Alignment for Unsupervised Domain AdaptationXiang Jiang 0001, Qicheng Lao, Stan Matwin, Mohammad Havaei. 4816-4827 [doi]
- Associative Memory in Iterated Overparameterized Sigmoid AutoencodersYibo Jiang, Cengiz Pehlevan. 4828-4838 [doi]
- Hierarchical Generation of Molecular Graphs using Structural MotifsWengong Jin, Regina Barzilay, Tommi S. Jaakkola. 4839-4848 [doi]
- Multi-Objective Molecule Generation using Interpretable SubstructuresWengong Jin, Regina Barzilay, Tommi Jaakkola. 4849-4859 [doi]
- Learning Adversarial {MChi Jin, Tiancheng Jin, Haipeng Luo, Suvrit Sra, Tiancheng Yu. 4860-4869 [doi]
- Reward-Free Exploration for Reinforcement LearningChi Jin, Akshay Krishnamurthy, Max Simchowitz, Tiancheng Yu. 4870-4879 [doi]
- What is Local Optimality in Nonconvex-Nonconcave Minimax Optimization?Chi Jin, Praneeth Netrapalli, Michael I. Jordan. 4880-4889 [doi]
- Efficiently Solving {MDPYujia Jin, Aaron Sidford. 4890-4900 [doi]
- Computational and Statistical Tradeoffs in Inferring Combinatorial Structures of Ising ModelYing Jin, Zhaoran Wang, Junwei Lu. 4901-4910 [doi]
- {ATyler B. Johnson, Pulkit Agrawal, Haijie Gu, Carlos Guestrin. 4911-4920 [doi]
- Guided Learning of Nonconvex Models through Successive Functional Gradient OptimizationRie Johnson, Tong Zhang 0001. 4921-4930 [doi]
- On Relativistic f-DivergencesAlexia Jolicoeur-Martineau. 4931-4939 [doi]
- Fair k-Centers via Maximum MatchingMatthew Jones, Huy Nguyen, Thy Nguyen. 4940-4949 [doi]
- Being {BTaejong Joo, Uijung Chung, Min-Gwan Seo. 4950-4961 [doi]
- Evaluating the Performance of Reinforcement Learning AlgorithmsScott M. Jordan, Yash Chandak, Daniel Cohen, Mengxue Zhang, Philip S. Thomas. 4962-4973 [doi]
- Stochastic Differential Equations with Variational Wishart DiffusionsMartin Jørgensen, Marc Peter Deisenroth, Hugh Salimbeni. 4974-4983 [doi]
- A simpler approach to accelerated optimization: iterative averaging meets optimismPooria Joulani, Anant Raj, András György, Csaba Szepesvári. 4984-4993 [doi]
- Sets ClusteringIbrahim Jubran, Murad Tukan, Alaa Maalouf, Dan Feldman. 4994-5005 [doi]
- Distribution Augmentation for Generative ModelingHeewoo Jun, Rewon Child, Mark Chen, John Schulman, Aditya Ramesh, Alec Radford, Ilya Sutskever. 5006-5019 [doi]
- Sub-Goal Trees a Framework for Goal-Based Reinforcement LearningTom Jurgenson, Or Avner, Edward Groshev, Aviv Tamar. 5020-5030 [doi]
- Partial Trace Regression and Low-Rank Kraus DecompositionHachem Kadri, Stéphane Ayache, Riikka Huusari, Alain Rakotomamonjy, Liva Ralaivola. 5031-5041 [doi]
- Strategyproof Mean Estimation from Multiple-Choice QuestionsAnson Kahng, Gregory Kehne, Ariel D. Procaccia. 5042-5052 [doi]
- Variational Autoencoders with {RDimitrios Kalatzis, David Eklund, Georgios Arvanitidis, Søren Hauberg. 5053-5066 [doi]
- {DNathan Kallus. 5067-5077 [doi]
- Double Reinforcement Learning for Efficient and Robust Off-Policy EvaluationNathan Kallus, Masatoshi Uehara. 5078-5088 [doi]
- Statistically Efficient Off-Policy Policy GradientsNathan Kallus, Masatoshi Uehara. 5089-5100 [doi]
- On the Power of Compressed Sensing with Generative ModelsAkshay Kamath, Eric Price, Sushrut Karmalkar. 5101-5109 [doi]
- Learning and Evaluating Contextual Embedding of Source CodeAditya Kanade, Petros Maniatis, Gogul Balakrishnan, Kensen Shi. 5110-5121 [doi]
- Operation-Aware Soft Channel Pruning using Differentiable MasksMinsoo Kang, Bohyung Han. 5122-5131 [doi]
- {SCAFFOLDSai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, Ananda Theertha Suresh. 5132-5143 [doi]
- Non-autoregressive Machine Translation with Disentangled Context TransformerJungo Kasai, James Cross, Marjan Ghazvininejad, Jiatao Gu. 5144-5155 [doi]
- Transformers are {RNNAngelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas 0002, François Fleuret. 5156-5165 [doi]
- Rate-distortion optimization guided autoencoder for isometric embedding in {EKeizo Kato, Jing Zhou, Tomotake Sasaki, Akira Nakagawa. 5166-5176 [doi]
- Efficient Non-conjugate {GStephen L. Keeley, David L. Zoltowski, Yiyi Yu, Spencer L. Smith, Jonathan W. Pillow. 5177-5186 [doi]
- Quantum Expectation-Maximization for {GIordanis Kerenidis, Alessandro Luongo, Anupam Prakash. 5187-5197 [doi]
- Differentiable Likelihoods for Fast Inversion of '{LHans Kersting, Nicholas Krämer, Martin Schiegg, Christian Daniel, Michael Tiemann, Philipp Hennig. 5198-5208 [doi]
- Feature Noise Induces Loss Discrepancy Across GroupsFereshte Khani, Percy Liang. 5209-5219 [doi]
- Entropy Minimization In Emergent LanguagesEugene Kharitonov, Rahma Chaabouni, Diane Bouchacourt, Marco Baroni. 5220-5230 [doi]
- Private Outsourced {BDmitrii Kharkovskii, Zhongxiang Dai, Bryan Kian Hsiang Low. 5231-5242 [doi]
- What can I do here? {AKhimya Khetarpal, Zafarali Ahmed, Gheorghe Comanici, David Abel, Doina Precup. 5243-5253 [doi]
- Uniform Convergence of Rank-weighted LearningJustin Khim, Liu Leqi, Adarsh Prasad, Pradeep Ravikumar. 5254-5263 [doi]
- {FACTJoon Sik Kim, Jiahao Chen, Ameet Talwalkar. 5264-5274 [doi]
- Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal MixupJang-Hyun Kim, Wonho Choo, Hyun Oh Song. 5275-5285 [doi]
- Domain Adaptive Imitation LearningKuno Kim, Yihong Gu, Jiaming Song, Shengjia Zhao, Stefano Ermon. 5286-5295 [doi]
- Variational Inference for Sequential Data with Future Likelihood EstimatesGeon-hyeong Kim, Youngsoo Jang, Hongseok Yang, Kee-Eung Kim. 5296-5305 [doi]
- Active World Model Learning with Progress CuriosityKuno Kim, Megumi Sano, Julian De Freitas, Nick Haber, Daniel Yamins. 5306-5315 [doi]
- {BSteven Kleinegesse, Michael U. Gutmann. 5316-5326 [doi]
- Optimal Continual Learning has Perfect Memory and is {NPJeremias Knoblauch, Hisham Husain, Tom Diethe. 5327-5337 [doi]
- Concept Bottleneck ModelsPang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, Percy Liang. 5338-5348 [doi]
- Learning Similarity Metrics for Numerical SimulationsGeorg Kohl, Kiwon Um, Nils Thuerey. 5349-5360 [doi]
- Equivariant Flows: Exact Likelihood Generative Learning for Symmetric DensitiesJonas Köhler, Leon Klein, Frank Noé. 5361-5370 [doi]
- Online Learning for Active Cache SynchronizationAndrey Kolobov, Sébastien Bubeck, Julian Zimmert. 5371-5380 [doi]
- A Unified Theory of Decentralized {SGDAnastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, Sebastian U. Stich. 5381-5393 [doi]
- Meta-learning for Mixed Linear RegressionWeihao Kong, Raghav Somani, Zhao Song, Sham M. Kakade, Sewoong Oh. 5394-5404 [doi]
- {SDELingkai Kong, Jimeng Sun, Chao Zhang. 5405-5415 [doi]
- On the Sample Complexity of Adversarial Multi-Source {PACNikola Konstantinov, Elias Frantar, Dan Alistarh, Christoph Lampert. 5416-5425 [doi]
- Asynchronous Coagent NetworksJames Kostas, Chris Nota, Philip Thomas. 5426-5435 [doi]
- Being Bayesian, Even Just a Bit, Fixes Overconfidence in {RAgustinus Kristiadi, Matthias Hein 0001, Philipp Hennig. 5436-5446 [doi]
- A Sequential Self Teaching Approach for Improving Generalization in Sound Event RecognitionAnurag Kumar, Vamsi K. Ithapu. 5447-5457 [doi]
- Curse of Dimensionality on Randomized Smoothing for Certifiable RobustnessAounon Kumar, Alexander Levine 0001, Tom Goldstein, Soheil Feizi. 5458-5467 [doi]
- Understanding Self-Training for Gradual Domain AdaptationAnanya Kumar, Tengyu Ma, Percy Liang. 5468-5479 [doi]
- On Implicit Regularization in $β$-{VAEAbhishek Kumar, Ben Poole. 5480-5490 [doi]
- Problems with Shapley-value-based explanations as feature importance measuresI. Elizabeth Kumar, Suresh Venkatasubramanian, Carlos Scheidegger, Sorelle A. Friedler. 5491-5500 [doi]
- Efficient Identification in Linear Structural Causal Models with Auxiliary CutsetsDaniel Kumor, Carlos Cinelli, Elias Bareinboim. 5501-5510 [doi]
- Two Routes to Scalable Credit Assignment without Weight SymmetryDaniel Kunin, Aran Nayebi, Javier Sagastuy-Breña, Surya Ganguli, Jonathan M. Bloom, Daniel Yamins. 5511-5521 [doi]
- Online Dense Subgraph Discovery via Blurred-Graph FeedbackYuko Kuroki, Atsushi Miyauchi 0001, Junya Honda, Masashi Sugiyama. 5522-5532 [doi]
- Inducing and Exploiting Activation Sparsity for Fast Inference on Deep Neural NetworksMark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr, Michael Goin, William M. Leiserson, Sage Moore, Nir Shavit, Dan Alistarh. 5533-5543 [doi]
- Soft Threshold Weight Reparameterization for Learnable SparsityAditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain 0002, Sham M. Kakade, Ali Farhadi. 5544-5555 [doi]
- Controlling Overestimation Bias with Truncated Mixture of Continuous Distributional Quantile CriticsArsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, Dmitry P. Vetrov. 5556-5566 [doi]
- Principled learning method for {WYongchan Kwon, Wonyoung Kim, Joong-Ho Won, Myunghee Cho Paik. 5567-5576 [doi]
- Concentration bounds for {CVPrashanth L. A., Krishna P. Jagannathan, Ravi Kumar Kolla. 5577-5586 [doi]
- Optimal Randomized First-Order Methods for Least-Squares ProblemsJonathan Lacotte, Mert Pilanci. 5587-5597 [doi]
- Duality in {RKHSPierre Laforgue, Alex Lambert, Luc Brogat-Motte, Florence d'Alché-Buc. 5598-5607 [doi]
- Recht-Re Noncommutative Arithmetic-Geometric Mean Conjecture is FalseZehua Lai, Lek-Heng Lim. 5608-5617 [doi]
- Bidirectional Model-based Policy OptimizationHang Lai, Jian Shen 0003, Weinan Zhang 0001, Yong Yu 0001. 5618-5627 [doi]
- Robust and Stable Black Box ExplanationsHimabindu Lakkaraju, Nino Arsov, Osbert Bastani. 5628-5638 [doi]
- {CURLMichael Laskin, Aravind Srinivas, Pieter Abbeel. 5639-5650 [doi]
- Efficient Proximal Mapping of the 1-path-norm of Shallow NetworksFabian Latorre Gómez, Paul Rolland, Nadav Hallak, Volkan Cevher. 5651-5661 [doi]
- Learning with Good Feature Representations in Bandits and in {RLTor Lattimore, Csaba Szepesvári, Gellért Weisz. 5662-5670 [doi]
- Inertial Block Proximal Methods for Non-Convex Non-Smooth OptimizationHien Le, Nicolas Gillis, Panagiotis Patrinos. 5671-5681 [doi]
- Self-Attentive Associative MemoryHung Le, Truyen Tran 0001, Svetha Venkatesh. 5682-5691 [doi]
- Causal Effect Identifiability under Partial-ObservabilitySanghack Lee, Elias Bareinboim. 5692-5701 [doi]
- Estimating Model Uncertainty of Neural Networks in Sparse Information FormJongseok Lee, Matthias Humt, Jianxiang Feng, Rudolph Triebel. 5702-5713 [doi]
- Self-supervised Label Augmentation via Input TransformationsHankook Lee, Sung Ju Hwang, Jinwoo Shin. 5714-5724 [doi]
- Batch Reinforcement Learning with Hyperparameter GradientsByung Jun Lee, Jongmin Lee, Peter Vrancx, DongHo Kim, Kee-Eung Kim. 5725-5735 [doi]
- Accelerated Message Passing for Entropy-Regularized {MAPJonathan N. Lee, Aldo Pacchiano, Peter L. Bartlett, Michael I. Jordan. 5736-5746 [doi]
- Learning Compound Tasks without Task-specific Knowledge via Imitation and Self-supervised LearningSang Hyun Lee, Seung-Woo Seo. 5747-5756 [doi]
- Context-aware Dynamics Model for Generalization in Model-Based Reinforcement LearningKimin Lee, Younggyo Seo, Seunghyun Lee, Honglak Lee, Jinwoo Shin. 5757-5766 [doi]
- Temporal Phenotyping using Deep Predictive Clustering of Disease ProgressionChangHee Lee, Mihaela van der Schaar. 5767-5777 [doi]
- Tensor denoising and completion based on ordinal observationsChanwoo Lee, Miaoyan Wang. 5778-5788 [doi]
- Analytic Marching: An Analytic Meshing Solution from Deep Implicit Surface NetworksJiabao Lei, Kui Jia. 5789-5798 [doi]
- {SGDQi Lei, Jason D. Lee, Alex Dimakis, Constantinos Daskalakis. 5799-5808 [doi]
- Fine-Grained Analysis of Stability and Generalization for Stochastic Gradient DescentYunwen Lei, Yiming Ying. 5809-5819 [doi]
- Learning Quadratic Games on NetworksYan Leng, Xiaowen Dong, Junfeng Wu, Alex Pentland. 5820-5830 [doi]
- {ACFYang Li, Shoaib Akbar, Junier Oliva. 5831-5841 [doi]
- Manifold Identification for Ultimately Communication-Efficient Distributed OptimizationYu-Sheng Li, Wei-Lin Chiang, Ching-Pei Lee. 5842-5852 [doi]
- Neural Architecture Search in A Proxy Validation Loss LandscapeYanxi Li, Minjing Dong, Yunhe Wang, Chang Xu. 5853-5862 [doi]
- {PENNIShiyu Li, Edward Hanson, Hai Li, Yiran Chen. 5863-5873 [doi]
- Implicit {EMingjie Li, Lingshen He, Zhouchen Lin. 5874-5883 [doi]
- Closed Loop Neural-Symbolic Learning via Integrating Neural Perception, Grammar Parsing, and Symbolic ReasoningQing Li, Siyuan Huang, Yining Hong, Yixin Chen, Ying Nian Wu, Song Chun Zhu. 5884-5894 [doi]
- Acceleration for Compressed Gradient Descent in Distributed and Federated OptimizationZhize Li, Dmitry Kovalev, Xun Qian, Peter Richtárik. 5895-5904 [doi]
- On the Relation between Quality-Diversity Evaluation and Distribution-Fitting Goal in Text GenerationJianing Li, Yanyan Lan, Jiafeng Guo, Xueqi Cheng. 5905-5915 [doi]
- Latent Space Factorisation and Manipulation via Matrix Subspace ProjectionXiao Li, Chenghua Lin, Ruizhe Li, Chaozheng Wang, Frank Guerin. 5916-5926 [doi]
- Visual Grounding of Learned Physical ModelsYunzhu Li, Toru Lin, Kexin Yi, Daniel Bear, Daniel Yamins, Jiajun Wu 0001, Joshua B. Tenenbaum, Antonio Torralba 0001. 5927-5936 [doi]
- Learning from Irregularly-Sampled Time Series: A Missing Data PerspectiveSteven Cheng-Xian Li, Benjamin M. Marlin. 5937-5946 [doi]
- Evolutionary Topology Search for Tensor Network DecompositionChao Li, Zhun Sun. 5947-5957 [doi]
- Train Big, Then Compress: Rethinking Model Size for Efficient Training and Inference of TransformersZhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, Joey Gonzalez. 5958-5968 [doi]
- Almost Tune-Free Variance ReductionBingcong Li, Lingda Wang, Georgios B. Giannakis. 5969-5978 [doi]
- Nearly Linear Row Sampling Algorithm for Quantile RegressionYi Li, Ruosong Wang, Lin Yang, Hanrui Zhang. 5979-5989 [doi]
- Temporal Logic Point ProcessesShuang Li 0002, Lu Wang, Ruizhi Zhang, Xiaofu Chang, Xuqin Liu, Yao Xie, Yuan Qi, Le Song. 5990-6000 [doi]
- Input-Sparsity Low Rank Approximation in Schatten NormYi Li, David P. Woodruff. 6001-6009 [doi]
- {RIFLEXingjian Li 0002, Haoyi Xiong, Haozhe An, Cheng-Zhong Xu 0001, Dejing Dou. 6010-6019 [doi]
- On a projective ensemble approach to two sample test for equality of distributionsZhimei Li, Yaowu Zhang. 6020-6027 [doi]
- Do We Really Need to Access the Source Data? {SJian Liang, Dapeng Hu, Jiashi Feng. 6028-6039 [doi]
- Variable Skipping for Autoregressive Range Density EstimationEric Liang, Zongheng Yang, Ion Stoica, Pieter Abbeel, Yan Duan, Peter Chen. 6040-6049 [doi]
- Adaptive Droplet Routing in Digital Microfluidic Biochips Using Deep Reinforcement LearningTung-Che Liang, Zhanwei Zhong, Yaas Bigdeli, Tsung-Yi Ho, Krishnendu Chakrabarty, Richard B. Fair. 6050-6060 [doi]
- {ARJae Hyun Lim, Aaron C. Courville, Christopher J. Pal, Chin-Wei Huang. 6061-6071 [doi]
- Hierarchical Verification for Adversarial RobustnessCong Han Lim, Raquel Urtasun, Ersin Yumer. 6072-6082 [doi]
- On Gradient Descent Ascent for Nonconvex-Concave Minimax ProblemsTianyi Lin, Chi Jin, Michael I. Jordan. 6083-6093 [doi]
- Extrapolation for Large-batch Training in Deep LearningTao Lin, Lingjing Kong, Sebastian U. Stich, Martin Jaggi. 6094-6104 [doi]
- On the Theoretical Properties of the Network JackknifeQiaohui Lin, Robert Lunde, Purnamrita Sarkar. 6105-6115 [doi]
- Handling the Positive-Definite Constraint in the {BWu Lin, Mark Schmidt 0001, Mohammad Emtiyaz Khan. 6116-6126 [doi]
- {IZinan Lin 0001, Kiran Koshy Thekumparampil, Giulia C. Fanti, Sewoong Oh. 6127-6139 [doi]
- Improving Generative Imagination in Object-Centric World ModelsZhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Bofeng Fu, Jindong Jiang, Sungjin Ahn. 6140-6149 [doi]
- Generalized and Scalable Optimal Sparse Decision TreesJimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, Margo I. Seltzer. 6150-6160 [doi]
- Finite-Time Last-Iterate Convergence for Multi-Agent Learning in GamesTianyi Lin, Zhengyuan Zhou, Panayotis Mertikopoulos, Michael I. Jordan. 6161-6171 [doi]
- Time-aware Large Kernel ConvolutionsVasileios Lioutas, Yuhong Guo. 6172-6183 [doi]
- Understanding the Curse of Horizon in Off-Policy Evaluation via Conditional Importance SamplingYao Liu 0009, Pierre-Luc Bacon, Emma Brunskill. 6184-6193 [doi]
- Sparse Shrunk Additive ModelsGuodong Liu, Hong Chen, Heng Huang. 6194-6204 [doi]
- Boosting Deep Neural Network Efficiency with Dual-Module InferenceLiu Liu, Lei Deng, Zhaodong Chen, Yuke Wang, Shuangchen Li, Jingwei Zhang, Yihua Yang, Zhenyu Gu, Yufei Ding, Yuan Xie. 6205-6215 [doi]
- Sample Complexity Bounds for 1-bit Compressive Sensing and Binary Stable Embeddings with Generative PriorsZhaoqiang Liu, Selwyn Gomes, Avtansh Tiwari, Jonathan Scarlett. 6216-6225 [doi]
- Peer Loss Functions: Learning from Noisy Labels without Knowing Noise RatesYang Liu, Hongyi Guo. 6226-6236 [doi]
- An Imitation Learning Approach for Cache ReplacementEvan Zheran Liu, Milad Hashemi, Kevin Swersky, Parthasarathy Ranganathan, Junwhan Ahn. 6237-6247 [doi]
- Exploration Through Reward Biasing: Reward-Biased Maximum Likelihood Estimation for Stochastic Multi-Armed BanditsXi Liu 0011, Ping-Chun Hsieh, Yu-Heng Hung, Anirban Bhattacharya, P. R. Kumar. 6248-6258 [doi]
- Hallucinative Topological Memory for Zero-Shot Visual PlanningKara Liu, Thanard Kurutach, Christine Tung, Pieter Abbeel, Aviv Tamar. 6259-6270 [doi]
- A Chance-Constrained Generative Framework for Sequence OptimizationXianggen Liu, Qiang Liu, Sen Song, Jian Peng 0001. 6271-6281 [doi]
- Min-Max Optimization without Gradients: Convergence and Applications to Black-Box Evasion and Poisoning AttacksSijia Liu 0001, Songtao Lu, Xiangyi Chen, Yao Feng, Kaidi Xu, Abdullah Al-Dujaili, Mingyi Hong, Una-May O'Reilly. 6282-6293 [doi]
- Median Matrix Completion: from Embarrassment to OptimalityWeidong Liu, Xiaojun Mao, Raymond K. W. Wong. 6294-6304 [doi]
- A Generic First-Order Algorithmic Framework for Bi-Level Programming Beyond Lower-Level SingletonRisheng Liu, Pan Mu, Xiaoming Yuan, Shangzhi Zeng, Jin Zhang. 6305-6315 [doi]
- Learning Deep Kernels for Non-Parametric Two-Sample TestsFeng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang 0001, Arthur Gretton, Dougal J. Sutherland. 6316-6326 [doi]
- Learning to Encode Position for Transformer with Continuous Dynamical ModelXuanqing Liu, Hsiang-Fu Yu, Inderjit S. Dhillon, Cho-Jui Hsieh. 6327-6335 [doi]
- Finding trainable sparse networks through Neural Tangent TransferTianlin Liu, Friedemann Zenke. 6336-6347 [doi]
- Weakly-Supervised Disentanglement Without CompromisesFrancesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, Michaël Tschannen. 6348-6359 [doi]
- Too Relaxed to Be Fair